


(FY 2014)

March 2017

Bureau of Environment Tokyo Metropolitan Government

H

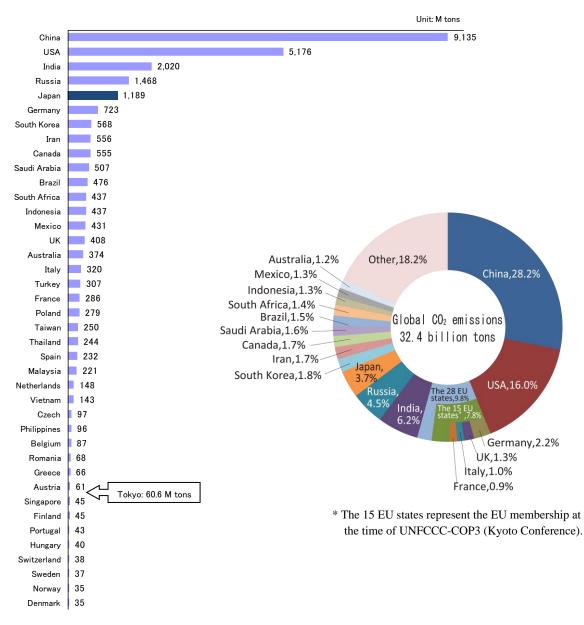
 $\blacksquare$ 

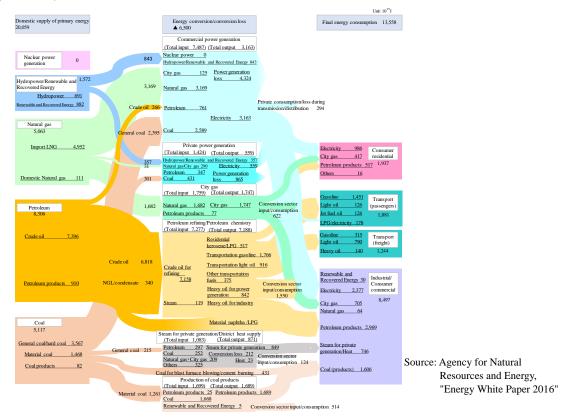
| 1 | Tokyo in the World                                                                                  | 1  |
|---|-----------------------------------------------------------------------------------------------------|----|
| 2 | Final Energy Consumption                                                                            | 2  |
|   | 2.1 Concepts for Calculation                                                                        | 2  |
|   | 2.2 Final Energy Consumption                                                                        | 3  |
|   | 2.2.1 Entire Tokyo                                                                                  | 3  |
|   | 2.2.2 Industrial Sector                                                                             | 6  |
|   | 2.2.3 Commercial Sector                                                                             | 9  |
|   | 2.2.4 Residential Sector                                                                            | 2  |
|   | 2.2.5 Transport Sector 1                                                                            | 7  |
| 3 | Total Greenhouse Gas Emissions                                                                      | 0  |
|   | 3.1 Concepts for Calculation                                                                        | 20 |
|   | 3.1.1 Basic Matters                                                                                 | 20 |
|   | 3.1.2 Categorization of GHGs                                                                        | 20 |
|   | 3.1.3 CO <sub>2</sub> Emission Factor for Electricity                                               | :1 |
|   | 3.1.4 Scope of Calculation                                                                          | :1 |
|   | 3.2 Total Greenhouse Gas Emissions                                                                  | 2  |
|   | 3.2.1 Entire Tokyo                                                                                  | 2  |
|   | 3.3 CO <sub>2</sub> Emissions (Variable Cases)                                                      | :4 |
|   | 3.3.1 Entire Tokyo                                                                                  | :4 |
|   | 3.4 CO <sub>2</sub> Emissions (Fixed Cases)                                                         | 28 |
|   | 3.4.1 Entire Tokyo                                                                                  | 28 |
|   | 3.4.2 [Reference] Trends in Each Sector                                                             | 51 |
|   | 3.5 Other GHG Emissions                                                                             | 3  |
|   | 3.5.1 Overview                                                                                      | 3  |
|   | 3.5.2 CH <sub>4</sub>                                                                               | 5  |
|   | 3.5.3 N <sub>2</sub> O                                                                              | 5  |
|   | 3.5.4 HFCs and Three Other Types                                                                    | 6  |
| 4 | Reference Materials                                                                                 | 7  |
|   | [Material 1] Calculation Methods for Final Energy Consumption and GHG Emissions (Overview) 3        | 7  |
|   | [Material 2] Trends in Final Energy Consumption in Tokyo and Gross Domestic Product(GDP) in Tokyo 4 | 0  |
|   | [Material 3] Greenhouse Gas Reduction Target and Energy Reduction Target in Tokyo 4                 | .1 |
| 5 | Figures and Tables                                                                                  | 2  |

Note: Values in this report have been rounded, and the sum of indicated values may not agree with the indicated total.

# **1** Tokyo in the World

- Figure 1-1 indicates energy-derived CO<sub>2</sub> emissions in major countries.
- Japan emits the fifth largest quantity after China, USA, India and Russia, accounting for 3.7% of the global emissions.
- Energy-derived CO<sub>2</sub> emissions in Tokyo account for 5.1% of domestic emissions. This is considered to be approximately equivalent to the amount of one country, such as Austria, Greece, etc. (GHG emissions in Tokyo account for 4.9% of domestic emissions.)





Figure 1-1 Energy-derived CO<sub>2</sub> emissions by country (2014)

Note: The figure indicates the 20 largest emitters, from China (1st place) to Poland (20th place), and other selected major countries. Sources: IEA, "CO<sub>2</sub> Emissions From Fuel Combustion Highlights (2016 Edition)", and Ministry of the Environment, "Energy-derived CO<sub>2</sub> Emissions in the World"

# 2 Final Energy Consumption

#### 2.1 Concepts for Calculation

- This chapter clarifies the state of energy consumption as the main cause of CO<sub>2</sub> emissions in Tokyo.
- Figure 2-1 indicates the flow of energy in Japan. First, the primary energy supply of petroleum, coal, natural gas, etc., is undertaken through domestic production or importation. By way of the power generation/conversion sectors (power plants, petroleum refineries, etc.), final energy consumption is undertaken by final demand sectors.
- In this survey, energy consumption excluding the losses in power generation, transmission, distribution, etc. on the final demand sectors (industrial/commercial/residential/transport sectors) (i.e. final energy consumption) in Tokyo is calculated.
- For the calculation methods for final energy consumption, an overview is indicated in Reference Material 1 (pages 37 to 39).



(Unit: GJ/Specific unit)

Figure 2-1 Domestic Energy Balance and Flow (Overview) (FY 2014)

| Fuel                                                      | Specific<br>unit    | Heat<br>conversion<br>factor | Remarks                                                                                                     |
|-----------------------------------------------------------|---------------------|------------------------------|-------------------------------------------------------------------------------------------------------------|
| Electricity                                               | MWh                 | 3.6                          | Secondary energy conversion                                                                                 |
| City gas                                                  | 1000 m <sup>3</sup> | 45.0                         | See materials of Tokyo Gas                                                                                  |
| Other fuels<br>(gasoline, kerosene, light oil, LPG, etc.) |                     |                              | See the energy balance table, Agency for Natural Resources<br>and Energy, "Comprehensive Energy Statistics" |

Note: Secondary energy conversion is conducted for electricity, from the perspective of calculating final energy consumption, excluding losses in power generation, transmission, distribution, etc.

# **2.2 Final Energy Consumption**

### 2.2.1 Entire Tokyo

- ▼ The final energy consumption in Tokyo in FY 2014 stood at 646 PJ, which was 19% reduction from 801 PJ in FY 2000, and 1.5% reduction from 656 PJ in FY 2013.
- ▼ Respective increase rates vs. FY 2000 for the industrial, commercial, and transport sectors stood at -45%, -6.0%, and -40%, while consumption in the residential sector increased by +2.8%.
- ▼ Since FY 2000, a decrease in gasoline and other fuel oils has substantially contributed to overall reduction in final energy consumption. Although electricity consumption had been an increasing trend, the behavior of power conservation took root in FY 2011 and after, and power consumption has remained at slightly lower than in FY 2000 since then.

|                                 |      |      | Final ene | rgy consur | Increase rate (%) |      |      |       |        |        |
|---------------------------------|------|------|-----------|------------|-------------------|------|------|-------|--------|--------|
|                                 | FY   | FY   | FY        | FY         | FY                | FY   | FY   | Vs.   | Vs.    | Vs.    |
|                                 | 2000 | 2005 | 2010      | 2011       | 2012              | 2013 | 2014 | 2000  | 2010   | 2013   |
| Industrial sector               | 97   | 79   | 70        | 61         | 60                | 56   | 53   | - 45% | - 24%  | - 4.6% |
| Commercial sector               | 245  | 274  | 260       | 233        | 237               | 237  | 231  | -6.0% | - 11%  | -2.6%  |
| Residential sector              | 202  | 217  | 221       | 212        | 212               | 209  | 208  | 2.8%  | - 6.1% | -0.6%  |
| Transport sector                | 257  | 218  | 172       | 168        | 161               | 154  | 154  | - 40% | - 10%  | 0.1%   |
| Final consumption sectors total | 801  | 788  | 723       | 674        | 670               | 656  | 646  | - 19% | - 11%  | -1.5%  |

Table 2-2 Final energy consumption by sector in Tokyo, and increases up to FY 2014

Note 1: The residential sector does not include fuel consumption by family cars, which is included in the transport sector. Note 2: In the transport sector, the scope of calculation for automobiles includes traffic in Tokyo, while that for railway, vessels, and airlines includes service in Tokyo.

| Table 2-3 | Final energy con | sumption by fue | l type in Tokyo | and increases | up to FY 2014 |
|-----------|------------------|-----------------|-----------------|---------------|---------------|
|           |                  |                 |                 |               |               |

|      |                                      | Final ener                                                                                                                                                              | rgy consur                                                                                                                                                                                                                                                       | Increase rate (%)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |                                                        |
|------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| FY   | FY                                   | FY                                                                                                                                                                      | FY                                                                                                                                                                                                                                                               | FY                                                                                                                                                                                                                                                                                                                                                                                                   | FY                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vs.                                                    | Vs.                                                    | Vs.                                                    |
| 2000 | 2005                                 | 2010                                                                                                                                                                    | 2011                                                                                                                                                                                                                                                             | 2012                                                                                                                                                                                                                                                                                                                                                                                                 | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                                   | 2010                                                   | 2013                                                   |
| 296  | 316                                  | 323                                                                                                                                                                     | 290                                                                                                                                                                                                                                                              | 293                                                                                                                                                                                                                                                                                                                                                                                                  | 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 3.7%                                                 | -12%                                                   | -2.9%                                                  |
| 187  | 211                                  | 197                                                                                                                                                                     | 188                                                                                                                                                                                                                                                              | 188                                                                                                                                                                                                                                                                                                                                                                                                  | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 3.0%                                                 | - 7.8%                                                 | - 1.7%                                                 |
| 32   | 26                                   | 19                                                                                                                                                                      | 21                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 36%                                                  | 9.0%                                                   | 24%                                                    |
| 284  | 235                                  | 183                                                                                                                                                                     | 174                                                                                                                                                                                                                                                              | 171                                                                                                                                                                                                                                                                                                                                                                                                  | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 44%                                                  | - 14%                                                  | -1.4%                                                  |
| 2    | 0                                    | 0                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 79%                                                  | 165%                                                   | 26%                                                    |
| 801  | 788                                  | 723                                                                                                                                                                     | 674                                                                                                                                                                                                                                                              | 670                                                                                                                                                                                                                                                                                                                                                                                                  | 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 19%                                                  | - 11%                                                  | - 1.5%                                                 |
|      | 2000<br>296<br>187<br>32<br>284<br>2 | 2000         2005           296         316           187         211           32         26           284         235           2         0           801         788 | FY         FY         FY         2010           296         316         323           187         211         197           32         26         19           284         235         183           2         0         0           801         788         723 | FY         FY         FY         FY         EY           2000         2005         2010         2011           296         316         323         290           187         211         197         188           32         26         19         21           284         235         183         174           2         0         0         1           801         788         723         674 | FY         FY         FY         FY         FY         EY         EY         2010         2011         2012           296         316         323         290         293         187         211         197         188         188           32         26         19         21         17           284         235         183         174         171           2         0         0         1         0           801         788         723         674         670 | 2000         2005         2010         2011         2012         2013           296         316         323         290         293         293           187         211         197         188         188         184           32         26         19         21         17         17           284         235         183         174         171         161           2         0         0         1         0         0           801         788         723         674         670         656 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Note: Fuel oils: gasoline, kerosene, light oil, heavy oil A/B/C, and jet fuel; Other: oil coke, coal coke, natural gas, etc.

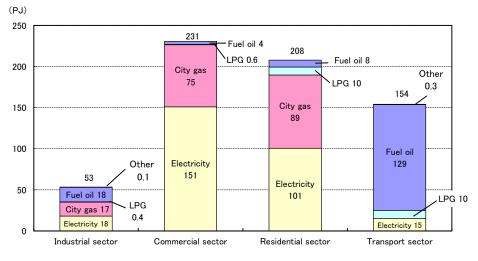
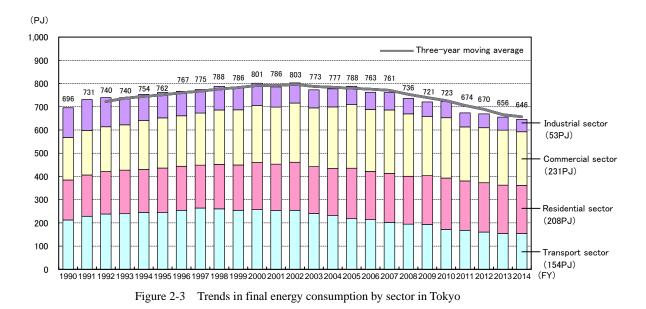




Figure 2-2 Final energy consumption by sector in Tokyo (FY 2014)

# 2.2.1-1 Final Energy Consumption by Sector in Entire Tokyo

- In the composition in FY 2014, the commercial sector took up the largest share (36%), followed by the residential sector (32%), transport sector (24%), and industrial sector (8%).
- As for sectoral trends in the composition since FY 2000, the commercial sector and the residential sector indicate an increasing trend, while the industrial sector has been showing a decreasing trend. The transport sector has been decreasing until around FY 2010, and thereafter it is almost the same level.



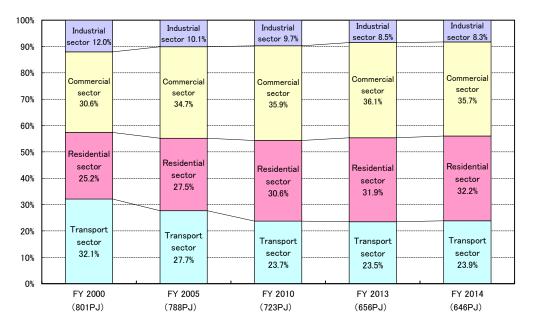



Figure 2-4 Composition ratios in final energy consumption by sector in Tokyo

# 2.2.1-2 Final Energy Consumption by Fuel Type in Entire Tokyo

- In the fuel type composition in FY 2014, electricity took up the largest share (44%), followed by city gas (28%) and fuel oil (25%).
- While the share of electricity temporarily decreased after the Great East Japan Earthquake due to the effect of power conservation, its share in FY 2013 recovered to the level of the FY 2010. In the meantime, the share of city gas has been slowly increasing.

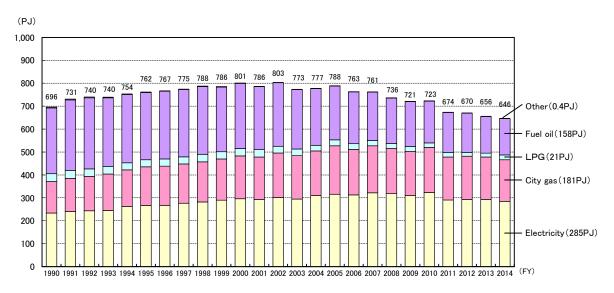



Figure 2-5 Trends in final energy consumption by fuel type in Tokyo

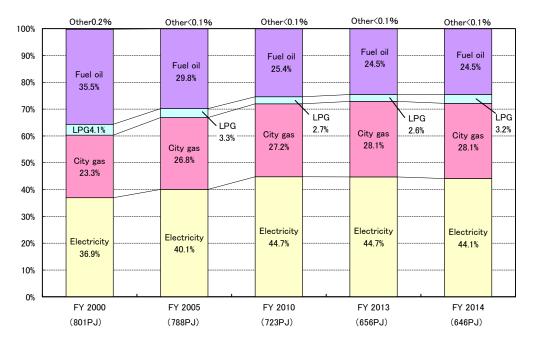



Figure 2-6 Composition ratios in final energy consumption by fuel type in Tokyo

# **2.2.2 Industrial Sector**

- ▼ The final energy consumption in the industrial sector in FY 2014 stood at 53 PJ, which was 45% reduction from 97 PJ in FY 2000, and 4.6% reduction from 56 PJ in FY 2013.
- ▼ Final energy consumption in the industrial sector has been decreasing since FY 1990.

#### 2.2.2-1 Final energy consumption by trade in the industrial sector

- In the trade composition in FY 2014, manufacturing took up the largest share (71%), followed by construction (26%), agriculture, forestry and fishery (3%), and mining (< 1%).
- Final energy consumption has been continuously decreasing in manufacturing, which accounts for approximately 70% of the industrial sector.

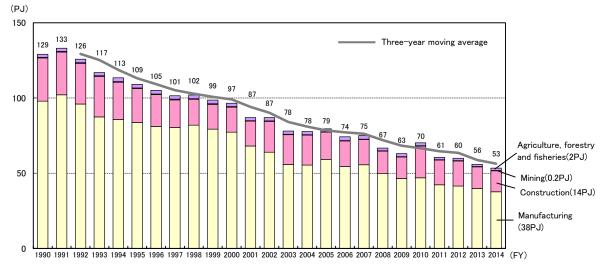
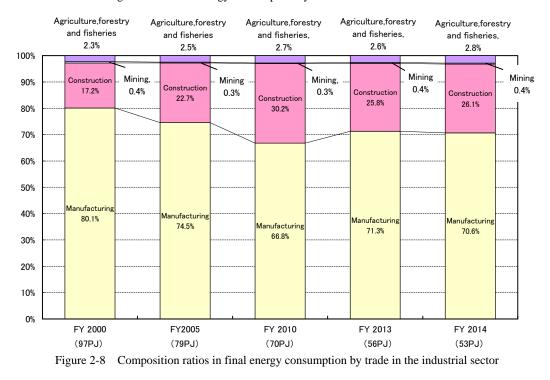




Figure 2-7 Final energy consumption by trade in the industrial sector



### 2.2.2-2 Final Energy Consumption by fuel type in the Industrial Sector

- In the fuel type composition in FY 2014, electricity took up the largest share (34%), followed by fuel oil (33%) and city gas (32%).
- Compared to FY 2000, the share of fuel oil has been decreasing, indicating progress in the conversion from fuel oils to electricity and city gas.

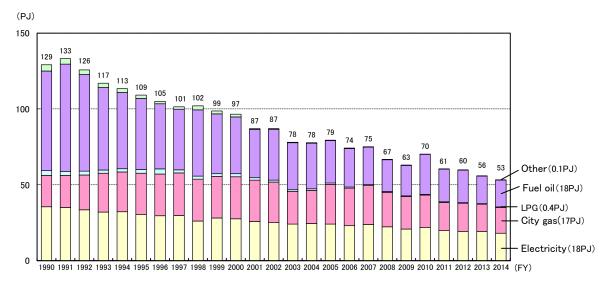



Figure 2-9 Trends in final energy consumption by fuel type in the industrial sector

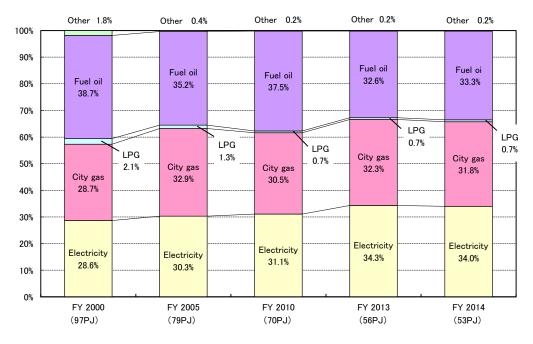
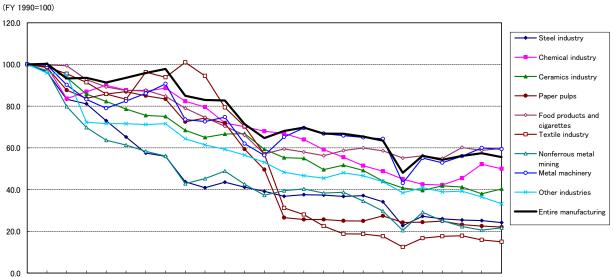




Figure 2-10 Composition ratios in final energy consumption by fuel type in the industrial sector

#### 2.2.2-3 Factor Analysis in the Industrial Sector

- The Indices of Industrial Production (IIP)\* for respective trade affect final energy consumption in manufacturing, the main trade in the industrial sector.
- Since FY 1990, IIP increase rates have been generally declining in manufacturing in Tokyo until about FY 2009, but there is a tendency of a slight recovery from FY 2010.
- In comparison with the nationwide IIP increase rates, the rates in Tokyo became smaller in FY 1994, and the gap with nationwide rates has become substantial since around FY 1998. The rate in Tokyo has been similar to that of the nationwide since FY 2008.
- \* The Indices of Industrial Production (IIP) are a systematic representation of various activities related to production, shipment, and inventory of domestic business sites that produce mining and industrial products. The IIP used here refers to production indices weighted by added value, which is calculated for 176 items (487 items for nationwide indices), based on the dynamic statistics of production, the Census of Manufacturers, etc.



1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 (FY)

Figure 2-11 IIP increases in manufacturing in Tokyo

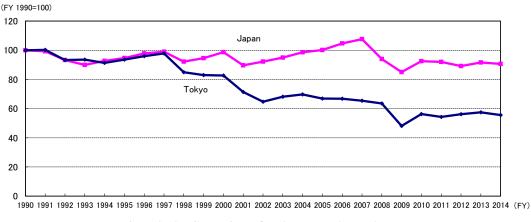
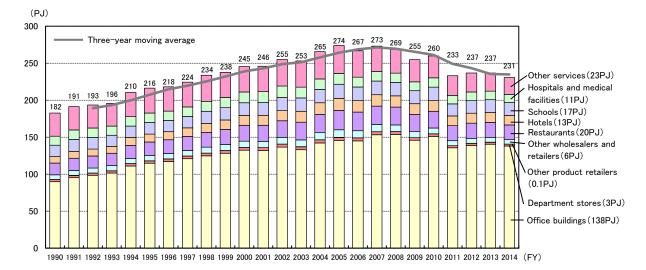
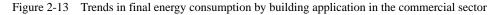



Figure 2-12 Comparison of IIP between Tokyo and Japan

Source: Tokyo: Prepared from the Tokyo Metropolitan Government (hereinafter referred to as "TMG"), "Tokyo Industrial Indices"

Japan: Prepared from Energy Data and Modeling Center, the Institute of Energy Economics, Japan "EDMC/Energy Economics Statistics Summary"


Note: IIP figures are weighted by added value.


## 2.2.3 Commercial Sector

- ▼ The final energy consumption in the commercial sector in FY 2014 stood at 231 PJ, which was 6.0% reduction from 245 PJ in FY 2000, and 2.6% reduction from 237PJ in FY 2013.
- ▼ Final energy consumption in the commercial sector has been increasing since FY 1990, but took a downturn with a peak at around FY 2007.

#### 2.2.3-1 Final Energy Consumption by Building Application in the Commercial Sector

- In the building application composition in FY 2014, office buildings took up the largest share (60%). Other applications included restaurants (9%), schools (8%), hotels (6%), etc.
- Since FY 2000, the share of office buildings has been rising. This indicates the structural characteristics of Tokyo, where the corporate head office buildings, tenant buildings, etc., are accumulated.









### 2.2.3-2 Final Energy Consumption by Fuel Type in the Commercial Sector

- In the fuel type composition in FY 2014, electricity (66%) and city gas (33%) combined accounted for 98% of the entire commercial sector.
- Since FY 2000, the share of fuel oil has been decreasing, indicating progress in the conversion from fuel oils to electricity and city gas.

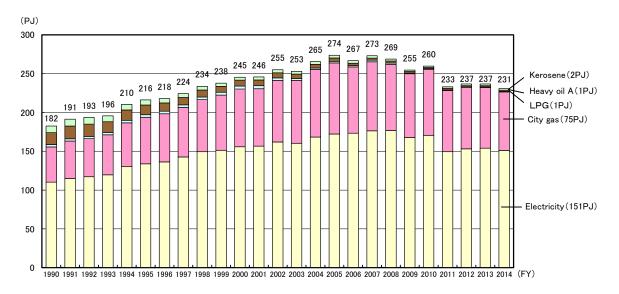



Figure 2-15 Trends in final energy consumption by fuel type in the commercial sector

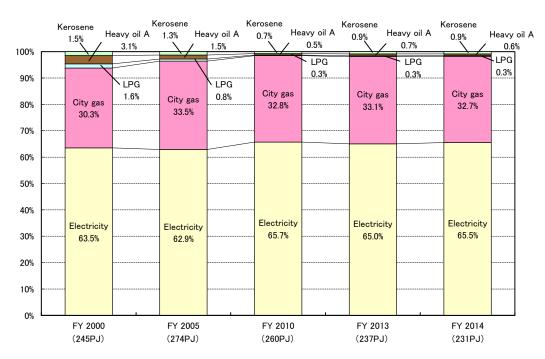
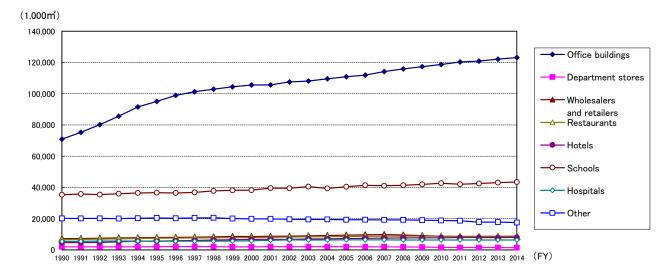




Figure 2-16 Composition ratios in final energy consumption by fuel type in the commercial sector

### 2.2.3-3 Factor Analysis in the Commercial Sector

- The total floor area by building application is an index that affects final energy consumption in the commercial sector.
- Since FY 1990, the total floor area has been increasing in the commercial sector. While the total floor area in the commercial sector is generally increasing across Japan, the remarkably high rate of office buildings is characteristic in Tokyo.
- The total floor area of office buildings in Tokyo has been steadily increasing since FY 1990.





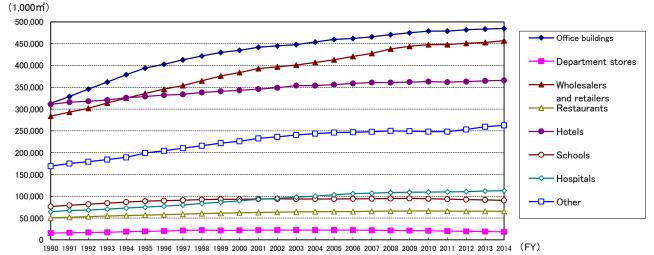



Figure 2-18 Trends in total floor area by trade in Japan

Note: "Department stores" include large-scale retail stores and supermarkets.

Source: Prepared from Energy Data and Modeling Center, the Institute of Energy Economics, Japan "EDMC/Energy Economics Statistics Summary"

# 2.2.4 Residential Sector

- ▼ The final energy consumption in the residential sector in FY 2014 stood at 208 PJ, which was 2.8% increase from 202 PJ in FY 2000, and 0.6% decrease from 209 PJ in FY 2013.
- ▼ Final energy consumption in the residential sector has been increasing since FY 1990, but it tends to decline these years.

### 2.2.4-1 Final Energy Consumption by Household Type in the Residential Sector

- In the household type composition in FY 2014, multiple-person households accounted for 69%, while single-person households made up 31%.
- Since FY 2000, the share of single-person households has been increasing in final energy consumption, indicating increase in aged single-person households, etc.



Figure 2-20 Composition ratios in final energy consumption by household type in the residential sector

## 2.2.4-2 Final Energy Consumption by Fuel Type in the Residential Sector

- In the fuel type composition in FY 2014, electricity (48%) and city gas (43%) combined accounted for 91% of the entire residential sector.
- Although the share of electricity had been increasing since FY 2000, it decreased by 3.8 points from FY 2010 level in FY2014 because behavior of power conservation was established after the Great East Japan Earthquake. In the meantime, the share of city gas extended 2.0 points from FY2010 level and the share of LPG extended 1.9 points from FY2010 in FY2014.

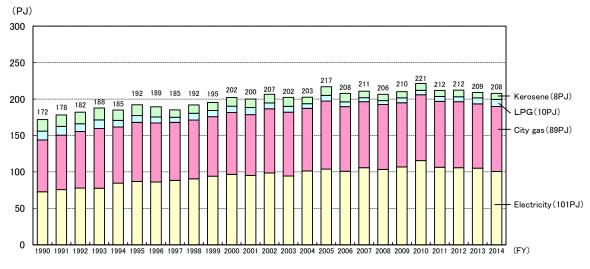



Figure 2-21 Trends in final energy consumption by fuel type in the residential sector

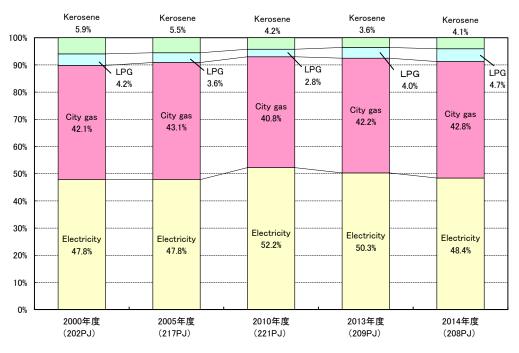



Figure 2-22 Composition ratios in final energy consumption by fuel type in the residential sector

#### 2.2.4-3 Factor Analysis in the Residential Sector

- The number of households is an index that affects final energy consumption in the residential sector.
- Since FY 1990, an increasing trend is more remarkable in single-person households than in multiple-person households. In addition, the proportion of the number of single-person households in Tokyo is larger than in Japan.

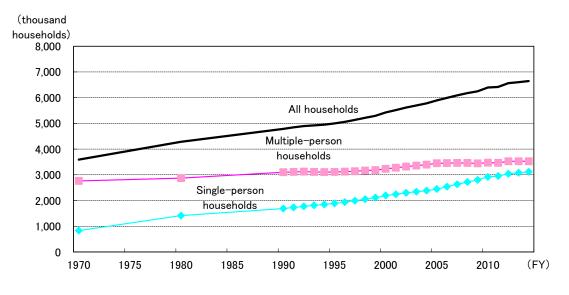
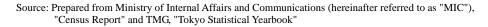




Figure 2-23 Trends in the number of households in Tokyo



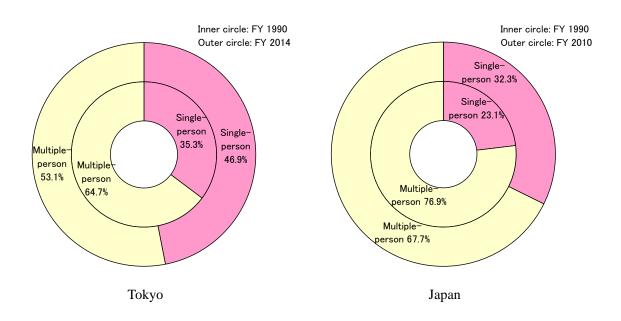
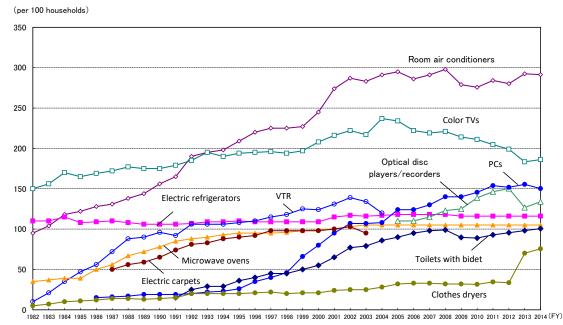
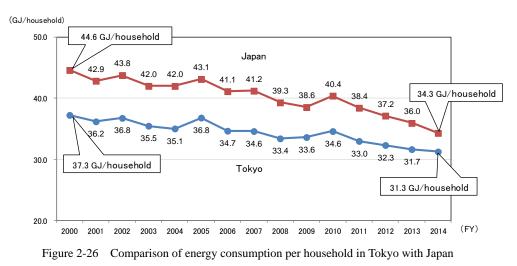
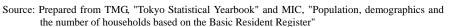



Figure 2-24 Comparison of the number of households between Tokyo and Japan Source: Prepared from MIC, "Census Report" and TMG, "Tokyo Statistical Yearbook"

The home appliance ownership rates are indices related to the shares of power consumption in the residential sector.

In general, ownership rates of major home appliances have been increasing in Tokyo. Since FY 2000, the ownership rates of room air conditioners, PCs, toilets with warm water bidet, clothes dryers, etc. have remarkably increased, as it reflects the growing needs for the comfort and convenience of life.



Figure 2-25 Trends in the ownership rates of home appliances in Tokyo

Note: The values for color TVs indicate the total of 29" or larger and below 29" for up to FY 2003, and the total of CRT and flat-screen (LCD, plasma, etc.) for FY 2004 and after. The values may not be continuous for some appliances between FY 2003 and FY 2009, due to the review of appliances in the source material.

Source: Prepared from MIC "National Consumption Survey" and Cabinet Office "Trends in Household Consumption"

#### Reference Data 1: Trends in energy consumption per household





#### Reference Data 2: Progress of energy saving for household electrical appliances

# (1) Air Conditioners

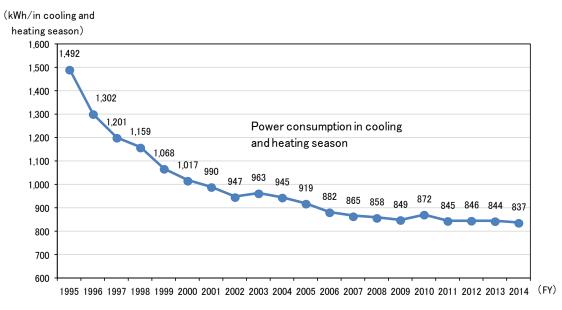
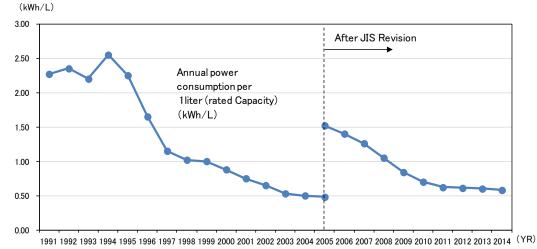




Figure 2-27 Progress of energy saving for air conditioners

Note: Simple average of the wall-mounted representative models with heating and cooling combined, cooling capacity of 2.8kW, and energy-saving function

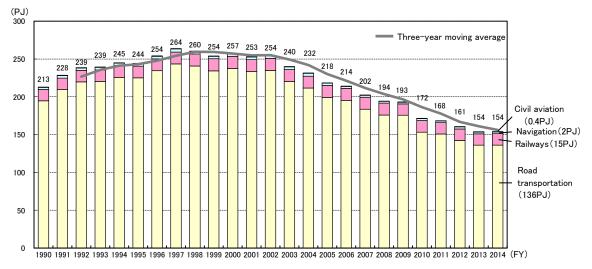
Source: Prepared from Energy Data and Modeling Center, the Institute of Energy Economics, Japan "EDMC/Energy Economics Statistics Summary"



#### (2) Electric Refrigerators



Figure 2-28 Progress of energy saving for electric refrigerators


Note: Average of the products from each company, corresponding to rated capacity of 401-450 liters since 2004 Source: Prepared from Energy Data and Modeling Center, the Institute of Energy Economics, Japan "EDMC/Energy Economics Statistics Summary"

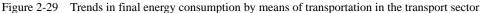
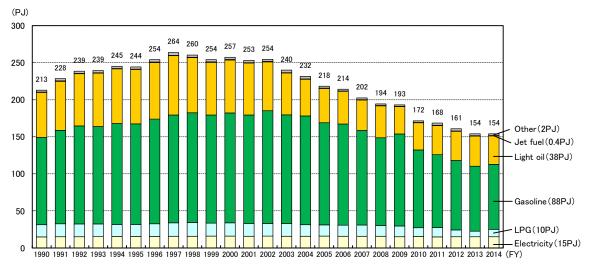
# 2.2.5 Transport Sector

- ▼ The final energy consumption in the transport sector in FY 2014 stood at 154 PJ, which was 40% reduction from 257 PJ in FY 2000, but almost no increase or decrease compared with that of the FY 2013.
- ▼ Final energy consumption in the transport sector has been decreasing since FY 2000.

#### 2.2.5-1 Final Energy Consumption by Means of Transportation in the Transport Sector

- In the composition in FY 2014 by means of transportation, road transportation took up the largest share (88%).
   Other means included railways (10%), navigation (2%), and civil aviation (<1%).</li>
- Road transportation accounts for approximately 90% of the transport sector. In addition to the decreased traffic in Tokyo, road conditions have been improved, and performance of individual automobiles have been enhanced, thereby improving the actual mileage, and leading to the continuous decrease in final energy consumption.



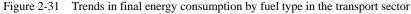




Figure 2-30 Composition ratios in final energy consumption by means of transportation in the transport sector

### 2.2.5-2 Final Energy Consumption by Fuel Type in the Transport Sector

- In the fuel type composition in FY 2014, gasoline contained in fuel oil took up the largest share (57%), followed by light oil (25%) and electricity (10%). Electricity includes the consumption by railroad.
- Since FY 2005, the share of gasoline has been decreasing. The share of light oil consumed by diesel cars tended to expand until FY 2013, but it decreased in FY 2014.





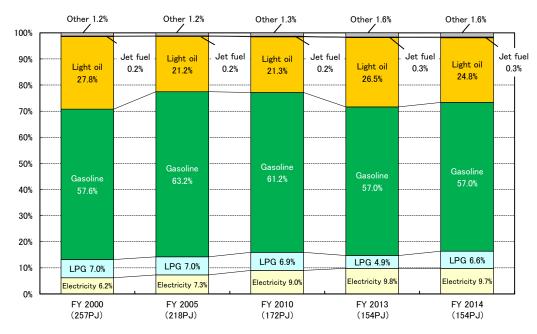



Figure 2-32 Composition ratios in final energy consumption by fuel type in the transport sector

#### 2.2.5-3 Factor Analysis in the Transport Sector

- The number of registered vehicles and the traffic are indices that affect final energy consumption by road transportation, the main means of transportation in the transport sector.
- For the numbers of registered vehicle in Tokyo, those of passenger cars and light cars have been increasing, while those of compact passenger cars and freight vehicles have been decreasing. The overall number remains mostly at the same level, with a slight decrease.
- The traffic of passenger vehicles in Tokyo had been increasing until FY 2000, and then took a downturn. In the meantime, freight vehicles have been slowing decreasing since FY 1990.

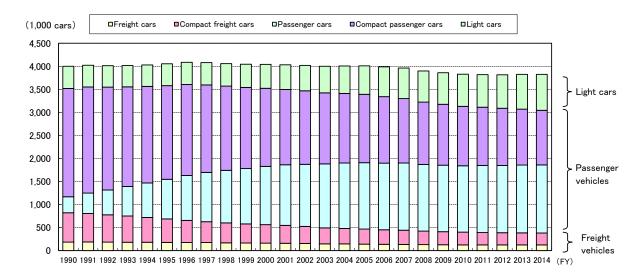
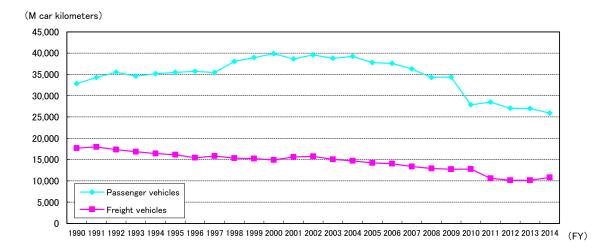




Figure 2-33 Trends in the number of registered vehicles in Tokyo

Note: "Light cars" include light passenger cars and light freight cars.

Sources: TMG "Tokyo Statistical Yearbook"

Registered Vehicles Based on Materials of the Road Transport Bureau, Ministry of Land, Infrastructure, Transport and Tourism (hereinafter referred to as "MLIT"), March 2015 (Automobile Inspection & Registration Information Association)





Note: Passenger vehicles: light passenger cars, compact passenger cars, passenger cars, and buses Freight vehicles: light freight cars, compact freight cars, freight/passenger cars, freight cars, and special freight cars

#### **Total Greenhouse Gas Emissions** 3

## **3.1 Concepts for Calculation**

### **3.1.1 Basic Matters**

- This chapter clarifies the status of GHG emissions in Tokyo.
- The scope of GHGs includes carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), dinitrogen oxide (N<sub>2</sub>O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF<sub>6</sub>), and nitrogen trifluoride (NF<sub>3</sub>). These seven types of gas are defined in the Act on Promotion of Global Warming Countermeasures.
- The GHGs other than CO<sub>2</sub> (CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs, SF<sub>6</sub>, NF<sub>3</sub>) are referred to as "Other GHGs".

In this survey, the values are calculated based on the Ministry of the Environment, "Manual for Formulating Action Plans (Regional Measures) for Municipal Governments against Global Warming". This manual describes calculation methods for GHG emissions in each prefecture. Calculation methods used here reflect the actual status in Tokyo more accurately, incorporating information and findings that have been uniquely collected by TMG.

For the calculation methods for GHG emissions in this survey, an overview is indicated in Reference Material 1 (pages 37 to 39).

|                  | GHG                  | Global warming potential | Main source(s) of emission                                                                  |
|------------------|----------------------|--------------------------|---------------------------------------------------------------------------------------------|
| $CO_2$           | Carbon dioxide       | 1                        | Combustion of fuel, incineration of waste, industrial process, etc.                         |
| $CH_4$           | Methane              | 25                       | Agriculture, waste, industrial process, combustion of fuel, leak from fuel, etc.            |
| N <sub>2</sub> O | Dinitrogen oxide     | 298                      | Agriculture, waste, industrial process, combustion of fuel, leak from fuel, etc.            |
| HFCs             | Hydrofluorocarbons   | 124 to 14,800            | Coolant, foaming agent, heat insulation material, aerosol and MDI, etc.                     |
| PFCs             | Perfluorocarbons     | 7,390 to 12,200          | Solvents, manufacturing of semiconductors and LCDs, etc.                                    |
| $SF_6$           | Sulfur hexafluoride  | 22,800                   | Electrical equipment using insulating gas, manufacturing of semiconductors and LCDs, etc.   |
| NF <sub>3</sub>  | Nitrogen trifluoride | 17,200                   | Leak from manufacturing of NF <sub>3</sub> , manufacturing of semiconductors and LCDs, etc. |

Table 3-1 GHGs and main source(s) of emission

Note: The "Global Warming Potential (GWP)" is a factor of the extent of greenhouse effect of a GHG, indicated in proportion to the extent of greenhouse effect of CO2. The values indicated here are based on the Fourth Assessment Report (2007) by the Intergovernmental Panel on Climate Change (IPCC).

### 3.1.2 Categorization of GHGs

- GHGs are categorized into CO<sub>2</sub> and other GHGs. CO<sub>2</sub> is further categorized into energy-derived CO<sub>2</sub> emissions and non-energy-derived CO2 emissions.
- "Energy-derived CO<sub>2</sub> emissions" refers to CO<sub>2</sub> that are generated through final energy consumption of electricity, etc. In this survey, non-energy-derived CO2 emissions include CO2 derived from incineration of waste.

| Table 3-2     Categorization of carbon dioxides |                                                                                                                                                                          |  |  |  |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Categorization                                  | Targeted sector                                                                                                                                                          |  |  |  |  |  |  |  |
| Energy-derived CO <sub>2</sub> emissions        | Final demand sectors<br>* The amount of emission from the final energy consumption of respectively for the industrial,<br>commercial, residential, and transport sectors |  |  |  |  |  |  |  |
| Non-energy-derived CO <sub>2</sub> emissions    | Waste sector<br>* The amount of emission from the incineration of waste is calculated.                                                                                   |  |  |  |  |  |  |  |

| Table 3-2 | Categorization | of combon | diaridaa |
|-----------|----------------|-----------|----------|
| rable 5-2 | Calegorization | OF Cardon | cnoxides |
|           |                |           |          |

## 3.1.3 CO<sub>2</sub> Emission Factor for Electricity

- The CO<sub>2</sub> emission factor for electricity changes every year, based on the power supply mix on the supply side.
- In this survey, "variable cases" are calculated applying yearly emission factors for the purpose of incorporating the influence of variation in power supply mix. At the same time, "fixed cases" are also calculated, fixating emission factors in FY 2001 and later to the emission factor in FY 2000 for the purpose of excluding the influence of variation in power supply mix.
- For the calculation of variable cases, the yearly emission factor is used for General Electricity Utility, and the yearly average emission factor is used for Power Producer and Suppliers (PPS). For the calculation of fixed cases, the emission factor for General Electricity Utility and the average emission factor for PPS in FY 2001 and later are fixated to the relevant factors in FY 2000 (General Electricity Utility: 0.328 kg-CO<sub>2</sub>/kWh, and PPS: 0.493 kg-CO<sub>2</sub>/kWh).

|                                          |       |       |       |       |       |       | 5     |       | 5     |       | (Uni  | t: kg-CO <sub>2</sub> | 2/kWh) |
|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------|--------|
|                                          | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001                  | 2002   |
| General Electricity Utility              | 0.380 | 0.385 | 0.390 | 0.367 | 0.378 | 0.358 | 0.336 | 0.335 | 0.315 | 0.326 | 0.328 | 0.317                 | 0.381  |
| PPS (average)                            |       |       |       |       |       |       |       |       |       |       | 0.493 | 0.454                 | 0.442  |
| All power supplies in<br>Tokyo (average) | 0.380 | 0.385 | 0.390 | 0.367 | 0.378 | 0.358 | 0.336 | 0.335 | 0.315 | 0.326 | 0.328 | 0.318                 | 0.381  |

| Table 3-3 | CO <sub>2</sub> emission factors for electricity used in this survey |
|-----------|----------------------------------------------------------------------|
|           |                                                                      |

|                                          | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  |
|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| General Electricity Utility              | 0.461 | 0.381 | 0.368 | 0.339 | 0.425 | 0.418 | 0.384 | 0.375 | 0.464 | 0.525 | 0.531 | 0.505 |
| PPS (average)                            | 0.432 | 0.448 | 0.460 | 0.447 | 0.480 | 0.446 | 0.464 | 0.420 | 0.412 | 0.429 | 0.425 | 0.433 |
| All power supplies in<br>Tokyo (average) | 0.460 | 0.383 | 0.372 | 0.345 | 0.428 | 0.420 | 0.388 | 0.378 | 0.461 | 0.519 | 0.523 | 0.499 |

Note: "Average" refers to the weighted average calculated in this survey is used, based on emission factors and sold electricity of electricity utilities that supply power in Tokyo.

| Table 3-4 | Categorized | l calculation | methods | based or | n CO <sub>2</sub> | emission | factors | for | electri | icity | ý |
|-----------|-------------|---------------|---------|----------|-------------------|----------|---------|-----|---------|-------|---|
|-----------|-------------|---------------|---------|----------|-------------------|----------|---------|-----|---------|-------|---|

| Classification                           | Energy type |                | Application of CO <sub>2</sub> emission factors                                     |
|------------------------------------------|-------------|----------------|-------------------------------------------------------------------------------------|
| Enumeral CO                              |             | Variable cases | Yearly emission factors are applied                                                 |
| Energy-derived CO <sub>2</sub> emissions | Electricity | Fixed cases    | Emission factors in FY 2001 and later are fixated to the emission factor in FY 2000 |

#### **3.1.4 Scope of Calculation**

- Most agricultural, forestry and fishery products, industrial products, etc., that are supplied in Tokyo are produced outside Tokyo, and therefore CO<sub>2</sub> emissions from such activities occur outside Tokyo. Such CO<sub>2</sub> emissions are excluded from this survey.
- CO<sub>2</sub> emissions through power consumption are calculated using emission factors at sale, and include emissions during power generation outside Tokyo (these emissions are allocated to the final demand sectors in accordance with the amount of power consumption).

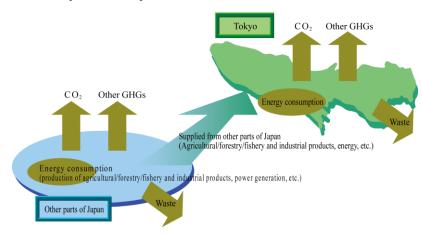
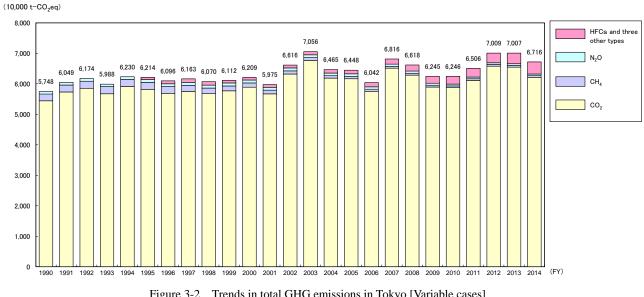



Figure 3-1 Image of GHG emissions in Tokyo

# 3.2 Total Greenhouse Gas Emissions


### 3.2.1 Entire Tokyo

The total GHG emissions in FY 2014 stood at 67.2 million tons of CO<sub>2</sub> equivalent. This is 8.2% increase from 62.1 million tons in FY 2000, and 4.1% reduction from 70.1 million tons in FY 2013.

|                  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | - L · · |       |       | 1     |       |       | (Unit: | 10,00 | 0 t-CC | $\mathbf{D}_2$ eq) |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|--------|-------|--------|--------------------|
|                  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005    | 2006  | 2007  | 2008  | 2009  | 2010  | 2011   | 2012  | 2013   | 2014               |
| CO <sub>2</sub>  | 5,444 | 5,734 | 5,855 | 5,675 | 5,913 | 5,820 | 5,689 | 5,751 | 5,679 | 5,771 | 5,889 | 5,670 | 6,321 | 6,768 | 6,188 | 6,167   | 5,755 | 6,511 | 6,285 | 5,894 | 5,874 | 6,108  | 6,577 | 6,548  | 6,212              |
| $CH_4$           | 221   | 227   | 230   | 231   | 231   | 228   | 218   | 201   | 181   | 159   | 139   | 121   | 105   | 91    | 79    | 72      | 67    | 63    | 62    | 60    | 59    | 58     | 57    | 57     | 57                 |
| N <sub>2</sub> O | 83    | 89    | 90    | 81    | 86    | 90    | 95    | 96    | 96    | 100   | 98    | 94    | 94    | 92    | 87    | 88      | 80    | 72    | 70    | 65    | 58    | 57     | 56    | 53     | 54                 |
| HFCs             |       |       |       |       |       | 32    | 47    | 60    | 68    | 68    | 75    | 81    | 89    | 100   | 109   | 119     | 137   | 167   | 198   | 224   | 253   | 280    | 316   | 347    | 392                |
| PFCs             |       |       |       |       |       | 32    | 33    | 40    | 35    | 9     | 5     | 4     | 4     | 4     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0     | 0      | 0                  |
| SF <sub>6</sub>  |       |       |       |       |       | 11    | 13    | 14    | 11    | 5     | 4     | 6     | 2     | 2     | 2     | 2       | 3     | 2     | 2     | 2     | 2     | 3      | 3     | 2      | 2                  |
| NF <sub>3</sub>  |       |       |       |       |       | 1     | 1     | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0      | 0     | 0      | 0                  |
| Total            | 5,748 | 6,049 | 6,174 | 5,988 | 6,230 | 6,214 | 6,096 | 6,163 | 6,070 | 6,112 | 6,209 | 5,975 | 6,616 | 7,056 | 6,465 | 6,448   | 6,042 | 6,816 | 6,618 | 6,245 | 6,246 | 6,506  | 7,009 | 7,007  | 6,716              |

Table 3-5 Trends in total GHG emissions in Tokyo [Variable cases]

Note: CO<sub>2</sub> emissions are calculated in the variable cases, where yearly CO<sub>2</sub> emission factors for electricity are applied.



| Figure 5-2 | frends in total OffO emissions in Tokyo [variable cases] |  |
|------------|----------------------------------------------------------|--|
|            |                                                          |  |

|                 |       |       |       |       | 14    | 010 0 | 0 (1  | coror | cnee) | 11011 | ao m  | totui | 0110  | , cum | 001011 | 5 111 1 | ungo  | . L <b>T</b> 117 | eu eu | Jeol  |       |         |       |       |       |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|-------|------------------|-------|-------|-------|---------|-------|-------|-------|
|                 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |         |       |                  |       |       | (U    | Jnit: 1 | 0,000 | t-CO2 | 2 eq) |
|                 | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004   | 2005    | 2006  | 2007             | 2008  | 2009  | 2010  | 2011    | 2012  | 2013  | 2014  |
| $CO_2$          | 5,444 | 5,734 | 5,855 | 5,675 | 5,913 | 5,820 | 5,689 | 5,751 | 5,679 | 5,771 | 5,889 | 5,760 | 5,884 | 5,712 | 5,760  | 5,847   | 5,686 | 5,693            | 5,557 | 5,448 | 5,513 | 5,110   | 5,102 | 5,060 | 4,975 |
| $CH_4$          | 221   | 227   | 230   | 231   | 231   | 228   | 218   | 201   | 181   | 159   | 139   | 121   | 105   | 91    | 79     | 72      | 67    | 63               | 62    | 60    | 59    | 58      | 57    | 57    | 57    |
| $N_2O$          | 83    | 89    | 90    | 81    | 86    | 90    | 95    | 96    | 96    | 100   | 98    | 94    | 94    | 92    | 87     | 88      | 80    | 72               | 70    | 65    | 58    | 57      | 56    | 53    | 54    |
| HFCs            |       |       |       |       |       | 32    | 47    | 60    | 68    | 68    | 75    | 81    | 89    | 100   | 109    | 119     | 137   | 167              | 198   | 224   | 253   | 280     | 316   | 347   | 392   |
| PFCs            |       |       |       |       |       | 32    | 33    | 40    | 35    | 9     | 5     | 4     | 4     | 4     | 0      | 0       | 0     | 0                | 0     | 0     | 0     | 0       | 0     | 0     | 0     |
| SF <sub>6</sub> |       |       |       |       |       | 11    | 13    | 14    | 11    | 5     | 4     | 6     | 2     | 2     | 2      | 2       | 3     | 2                | 2     | 2     | 2     | 3       | 3     | 2     | 2     |
| NF <sub>3</sub> |       |       |       |       |       | 1     | 1     | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 0      | 0       | 0     | 0                | 0     | 0     | 0     | 0       | 0     | 0     | 0     |
| Total           | 5,748 | 6,049 | 6,174 | 5,988 | 6,230 | 6,214 | 6,096 | 6,163 | 6,070 | 6,112 | 6,209 | 6,066 | 6,178 | 6,000 | 6,037  | 6,128   | 5,973 | 5,998            | 5,889 | 5,799 | 5,885 | 5,508   | 5,534 | 5,519 | 5,479 |

Note: CO<sub>2</sub> emissions are calculated in the fixed cases, where CO<sub>2</sub> emission factors for electricity for FY 2001 and after are fixed to the emission factor in FY 2000.

- In the total GHG emissions, CO<sub>2</sub> emissions account for 92.5% in FY 2014, which was 2.3-point reduction from FY 2000, and 1.5-point reduction from FY 2010.
- In comparison with the national shares by GHG in FY 2014, the share of 4 gases in Tokyo is larger than that in Japan (Japan 3.1%, Tokyo 5.9%).

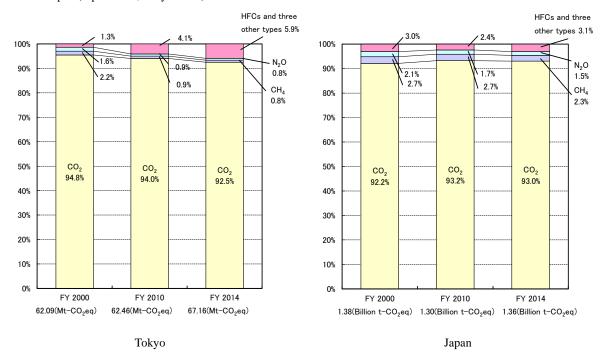



Figure 3-3 Composition ratios by GHG in Tokyo and in Japan [Variable cases]

Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

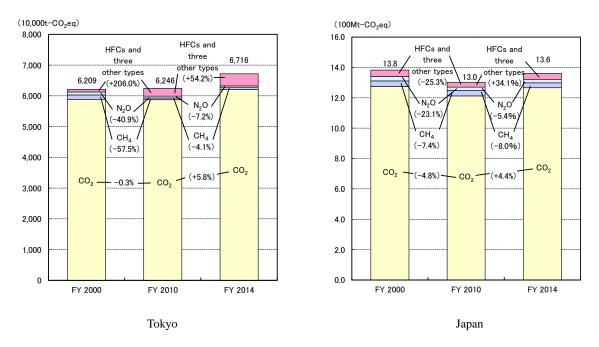



Figure 3-4 Increase rates by GHG in Tokyo and in Japan [Variable cases]

Note: The values in brackets respectively indicate increase in FY 2010 from FY 2000, and increase in FY 2014 from FY 2010. Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

# **3.3 CO<sub>2</sub> Emissions (Variable Cases)**

Variable cases: yearly CO<sub>2</sub> emission factors for electricity are applied, for the purpose of incorporating the influence of variation in power supply mix

### 3.3.1 Entire Tokyo

- ▼ The total CO<sub>2</sub> emissions in FY 2014 stood at 62.1 million tons. This is 5.5% increase from 58.9 million tons in FY 2000, and 5.1% reduction from 65.5 million tons in the previous fiscal year.
- ▼ The CO<sub>2</sub> emissions from electricity in FY 2014 increased by 16% from FY 2010, due to the deteriorated emission factor after the Great East Japan Earthquake.

|                                                 |            |            | CO <sub>2</sub> emiss | ions (10,00 |            | In         | crease rate (% | %)          |             |             |
|-------------------------------------------------|------------|------------|-----------------------|-------------|------------|------------|----------------|-------------|-------------|-------------|
|                                                 | FY<br>2000 | FY<br>2005 | FY<br>2010            | FY<br>2011  | FY<br>2012 | FY<br>2013 | FY<br>2014     | Vs.<br>2000 | vs.<br>2010 | vs.<br>2013 |
| Industrial sector                               | 680        | 579        | 520                   | 497         | 521        | 496        | 460            | -32%        | - 11%       | -7.2%       |
| Commercial sector                               | 1,891      | 2,319      | 2,243                 | 2,322       | 2,606      | 2,626      | 2,472          | 31%         | 10%         | -5.9%       |
| Residential sector                              | 1,434      | 1,652      | 1,748                 | 1,912       | 2,091      | 2,084      | 1,965          | 37%         | 12%         | - 5.7%      |
| Transport sector                                | 1,765      | 1,518      | 1,206                 | 1,219       | 1,198      | 1,170      | 1,157          | - 34%       | - 4.1%      | -1.1%       |
| Energy-derived CO <sub>2</sub><br>emissions     | 5,769      | 6,067      | 5,718                 | 5,951       | 6,417      | 6,377      | 6,055          | 5.0%        | 5.9%        | - 5.0%      |
| Non-energy-derived CO <sub>2</sub><br>emissions | 120        | 100        | 156                   | 157         | 161        | 171        | 157            | 30%         | 0.3%        | -8.5%       |
| Total CO <sub>2</sub> emissions                 | 5,889      | 6,167      | 5,874                 | 6,108       | 6,577      | 6,548      | 6,212          | 5.5%        | 5.8%        | - 5.1%      |

Table 3-7 Total CO<sub>2</sub> emissions by sector and increases up to FY 2014 in Tokyo [Variable cases]

Note 1: The residential sector does not include emissions by family cars, which is included in the transport sector. Note 2: In the transport sector, the scope of calculation for automobiles includes traffic in Tokyo, while that for railway, vessels, and airlines includes service in Tokyo.

#### Table 3-8Total energy-derived CO2 emissions by fuel type and increases up to FY 2014 in Tokyo [Variable cases]

|                                             |                                                                                                                                                                                   | (     | CO <sub>2</sub> emiss | ions (10,00 |       |       |       | Increase rate (%) |             |             |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|-------------|-------|-------|-------|-------------------|-------------|-------------|--|--|
|                                             | FY         2010         2011         2012         2013         2014 |       |                       |             |       |       |       | Vs.<br>2000       | vs.<br>2010 | vs.<br>2013 |  |  |
| Electricity                                 | 2,698                                                                                                                                                                             | 3,268 | 3,392                 | 3,719       | 4,230 | 4,261 | 3,946 | 46%               | 16%         | -7.4%       |  |  |
| City gas                                    | 926                                                                                                                                                                               | 1,047 | 967                   | 923         | 924   | 906   | 891   | -3.8%             | -7.8%       | -1.7%       |  |  |
| LPG                                         | 196                                                                                                                                                                               | 158   | 116                   | 124         | 103   | 102   | 125   | -36%              | 8.4%        | 24%         |  |  |
| Fuel oil                                    | 1,930                                                                                                                                                                             | 1,592 | 1,241                 | 1,180       | 1,156 | 1,106 | 1,091 | -43%              | -12%        | -1.4%       |  |  |
| Other                                       | 19                                                                                                                                                                                | 3     | 1                     | 6           | 3     | 2     | 3     | -87%              | 70%         | 20%         |  |  |
| Energy-derived CO <sub>2</sub><br>emissions | 5,769                                                                                                                                                                             | 6,067 | 5,718                 | 5,951       | 6,417 | 6,377 | 6,055 | 5.0%              | 5.9%        | - 5.0%      |  |  |

Note: Fuel oils: gasoline, kerosene, light oil, heavy oil A/B/C, and jet fuel; Other: oil coke, coal coke, natural gas, etc.

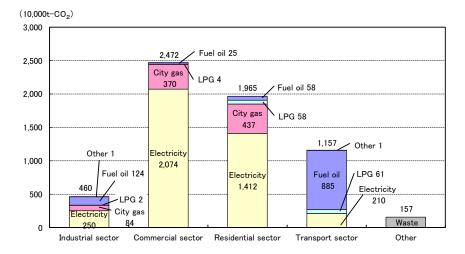



Figure 3-5 CO<sub>2</sub> emissions by sector in Tokyo (FY 2014) [Variable cases]

### 3.3.1-1 CO<sub>2</sub> Emissions in Entire Tokyo (by Sector, Total CO<sub>2</sub> Emissions)

Combining energy-derived CO<sub>2</sub> emissions (industrial, commercial, residential, and transport sectors) with non-energy-derived CO<sub>2</sub> emissions (others), trends and composition ratios by sector in total CO<sub>2</sub> emissions are as follows:

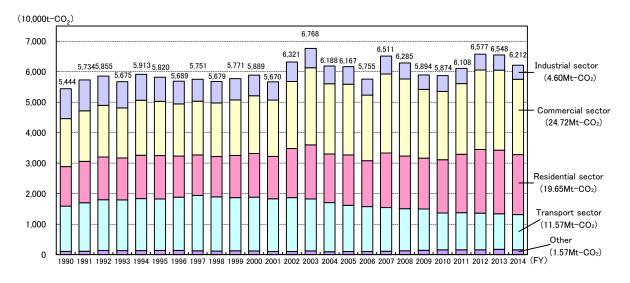
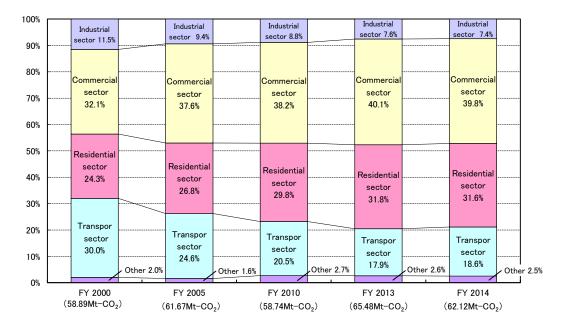
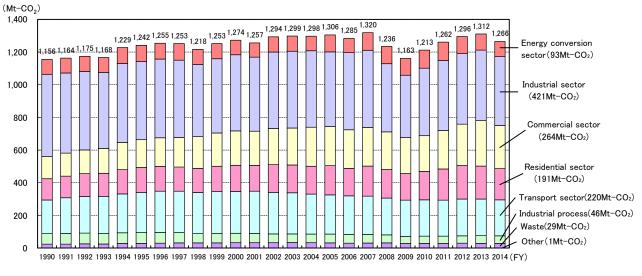



Figure 3-6 Trends in total CO2 emissions by sector in Tokyo [Variable cases]





Figure 3-7 Composition ratios in total CO<sub>2</sub> emissions by sector in Tokyo [Variable cases]

Note 1: "Other" indicates CO<sub>2</sub> emissions from the incineration of waste.

Note 2: Tokyo does not count the "energy conversion sector" because Tokyo allocates CO<sub>2</sub> emissions from the energy conversion sector to the final demand sectors in accordance with the amount of power consumption.

Note 3: Tokyo does not count the "industrial process" due to the minimal CO<sub>2</sub> emissions from the industrial process and its difficulty of statistical grasp.

In comparison with the national CO<sub>2</sub> emission structure by sector in FY 2014, Tokyo has a smaller share of the industrial sector (7.4% vs. 33% nationwide), and larger shares of the commercial sector (40% vs. 21% nationwide) and the residential sector (32% vs. 15% nationwide).





Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

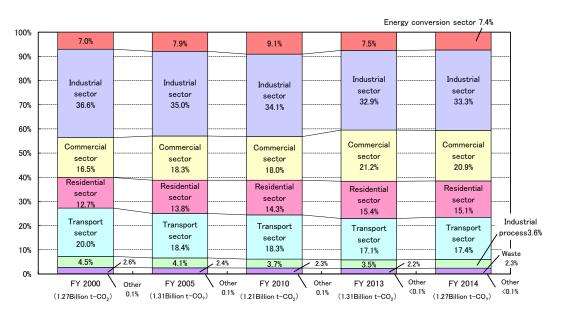



Figure 3-9 Composition ratios in CO<sub>2</sub> emissions in Japan

Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

### 3.3.1-2 CO<sub>2</sub> Emissions in Entire Tokyo (by Fuel Type, Energy-derived CO<sub>2</sub> Emissions)

Trends and composition ratios by fuel type in energy-derived CO<sub>2</sub> emissions are as follows:

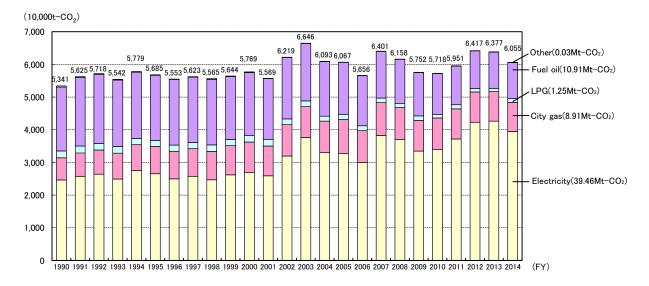



Figure 3-10 Trends in energy-derived CO<sub>2</sub> emissions by fuel type in Tokyo [Variable cases]



Figure 3-11 Composition ratios in energy-derived CO<sub>2</sub> emissions by fuel type in Tokyo [Variable cases] Note: Fuel oils: gasoline, kerosene, light oil, heavy oil A/B/C, and jet fuel; Other: oil coke, coal coke, natural gas, etc.

# **3.4 CO<sub>2</sub> Emissions (Fixed Cases)**

Fixed cases: CO<sub>2</sub> emission factors for electricity in FY 2001 and later are fixated to the emission factor in FY 2000, for the purpose of excluding the influence of variation in power supply mix

#### 3.4.1 Entire Tokyo

- The total CO<sub>2</sub> emissions in FY 2014 stood at 49.8 million tons. This is 16% reduction from 58.9 million tons in FY 2000, and 1.7% reduction from 50.6 million tons in the previous fiscal year.
- ▼ The CO<sub>2</sub> emissions from electricity in FY 2014 decreased by 11% from FY 2010, due to the exclusion of influence of the deteriorated emission factor after the Great East Japan Earthquake.

| Tuble                                           | J-7 10tal |       | sions by sc           |           | icicases up | 101120 | /14 III 10K  |       | .505   |        |
|-------------------------------------------------|-----------|-------|-----------------------|-----------|-------------|--------|--------------|-------|--------|--------|
|                                                 |           | С     | O <sub>2</sub> emissi | ons (10,0 |             | Inc    | rease rate ( | (%)   |        |        |
|                                                 | FY        | FY    | FY                    | FY        | Vs.         | vs.    | VS.          |       |        |        |
|                                                 | 2000      | 2005  | 2010                  | 2011      | 2012        | 2013   | 2014         | 2000  | 2010   | 2013   |
| Industrial sector                               | 680       | 553   | 495                   | 430       | 426         | 402    | 385          | - 43% | - 22%  | - 4.2% |
| Commercial sector                               | 1,891     | 2,158 | 2,078                 | 1,849     | 1,888       | 1,910  | 1,880        | -0.6% | - 9.6% | -1.6%  |
| Residential sector                              | 1,434     | 1,536 | 1,597                 | 1,510     | 1,512       | 1,492  | 1,471        | 2.6%  | - 7.9% | - 1.4% |
| Transport sector                                | 1,765     | 1,501 | 1,186                 | 1,163     | 1,115       | 1,085  | 1,084        | - 39% | - 8.7% | - 0.2% |
| Energy-derived CO <sub>2</sub> emissions        | 5,769     | 5,748 | 5,357                 | 4,952     | 4,941       | 4,889  | 4,819        | - 16% | -10%   | - 1.4% |
| Non-energy-derived<br>CO <sub>2</sub> emissions | 120       | 100   | 156                   | 157       | 161         | 171    | 157          | 30%   | 0.3%   | -8.5%  |
| Total CO <sub>2</sub> emissions                 | 5,889     | 5,847 | 5,513                 | 5,110     | 5,102       | 5,060  | 4,975        | - 16% | - 9.8% | - 1.7% |

Table 3-9 Total CO<sub>2</sub> emissions by sector and increases up to FY 2014 in Tokyo [Fixed cases]

Note 1: The residential sector does not include emissions by family cars, which is included in the transport sector.

Note 2: In the transport sector, the scope of calculation for automobiles includes traffic in Tokyo, while that for railway, vessels, and airlines includes service in Tokyo.

#### Table 3-10 Total energy-derived CO<sub>2</sub> emissions by fuel type and increases up to FY 2014 in Tokyo [Fixed cases]

|                                             |       | C     | O <sub>2</sub> emissi | ons (10,0 | 00 t-CO <sub>2</sub> | )     |       | Increase rate (%) |        |        |  |  |
|---------------------------------------------|-------|-------|-----------------------|-----------|----------------------|-------|-------|-------------------|--------|--------|--|--|
|                                             | FY    | FY    | FY                    | FY        | FY                   | FY    | FY    | Vs.               | vs.    | vs.    |  |  |
|                                             | 2000  | 2005  | 2010                  | 2011      | 2012                 | 2013  | 2014  | 2000              | 2010   | 2013   |  |  |
| Electricity                                 | 2,698 | 2,948 | 3,031                 | 2,720     | 2,755                | 2,773 | 2,709 | 0.4%              | - 11%  | -2.3%  |  |  |
| City gas                                    | 926   | 1,047 | 967                   | 923       | 924                  | 906   | 891   | - 3.8%            | - 7.8% | - 1.7% |  |  |
| LPG                                         | 196   | 158   | 116                   | 124       | 103                  | 102   | 125   | - 36%             | 8.4%   | 24%    |  |  |
| Fuel oil                                    | 1,930 | 1,592 | 1,241                 | 1,180     | 1,156                | 1,106 | 1,091 | - 43%             | - 12%  | - 1.4% |  |  |
| Other                                       | 19    | 3     | 1                     | 6         | 3                    | 2     | 3     | - 87%             | 70%    | 20%    |  |  |
| Energy-derived<br>CO <sub>2</sub> emissions | 5,769 | 5,748 | 5,357                 | 4,952     | 4,941                | 4,889 | 4,819 | - 16%             | -10%   | - 1.4% |  |  |

Note: Fuel oils: gasoline, kerosene, light oil, heavy oil A/B/C, and jet fuel; Other: oil coke, coal coke, natural gas, etc.

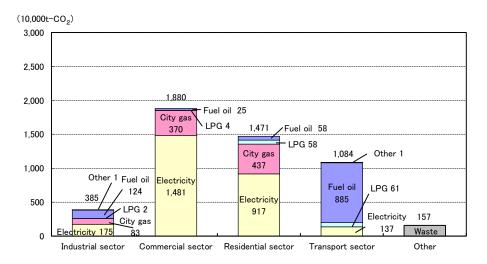



Figure 3-12 CO<sub>2</sub> emissions by sector in Tokyo (FY 2014) [Fixed cases]

### 3.4.1-1 CO<sub>2</sub> Emissions in Entire Tokyo (by Sector, Total CO<sub>2</sub> Emissions)

Combining energy-derived CO<sub>2</sub> emissions (industrial, commercial, residential, and transport sectors) with non-energy-derived CO<sub>2</sub> emissions (others), trends and composition ratios by sector in total CO<sub>2</sub> emissions are as follows:

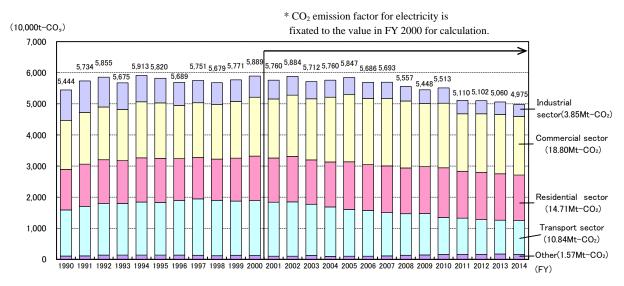
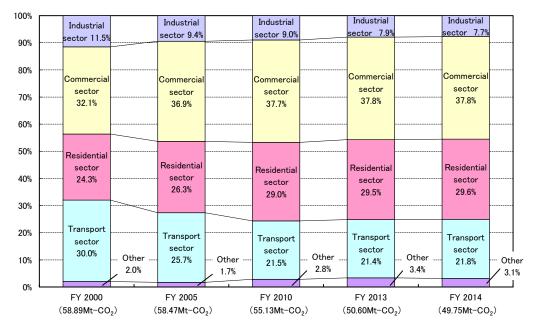
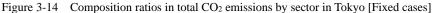





Figure 3-13 Trends in total CO<sub>2</sub> emissions by sector in Tokyo [Fixed cases]





Note 1: "Other" indicates CO2 emissions from the incineration of waste.

Note 2: Tokyo does not count the "energy conversion sector" because Tokyo allocates  $CO_2$  emissions from the energy conversion sector to the final demand sectors in accordance with the amount of power consumption.

Note 3: Tokyo does not count the "industrial process" due to the minimal CO<sub>2</sub> emissions from the industrial process and its difficulty of statistical grasp.

### 3.4.1-2 CO<sub>2</sub> Emissions in Entire Tokyo (by Fuel Type, Energy-derived CO<sub>2</sub> Emissions)

Trends and composition ratios by fuel type in energy-derived CO<sub>2</sub> emissions are as follows:

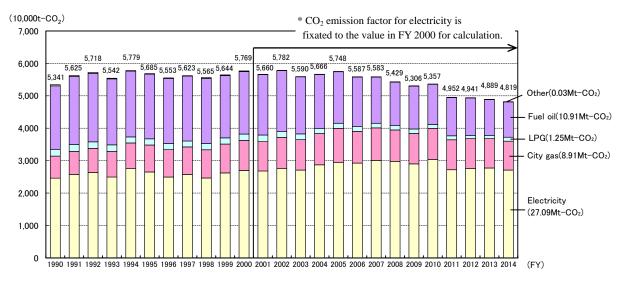



Figure 3-15 Trends in energy-derived CO<sub>2</sub> emissions by fuel type in Tokyo [Fixed cases]

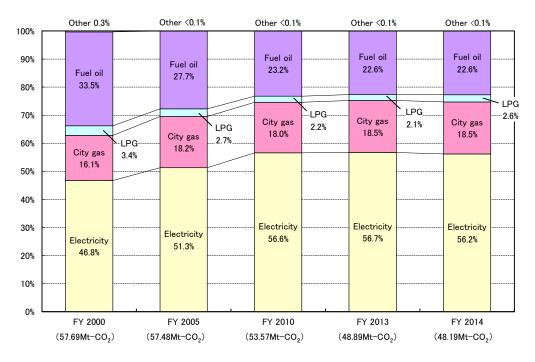



Figure 3-16 Composition ratios in energy-derived CO<sub>2</sub> emissions by fuel type in Tokyo [Fixed cases] Note: Fuel oils: gasoline, kerosene, light oil, heavy oil A/B/C, and jet fuel; Other: oil coke, coal coke, natural gas, etc.

# 3.4.2 [Reference] Trends in Each Sector

### 3.4.2-1 Industrial Sector

Trends in CO<sub>2</sub> emissions (fixed cases) in the industrial sector are as follows:

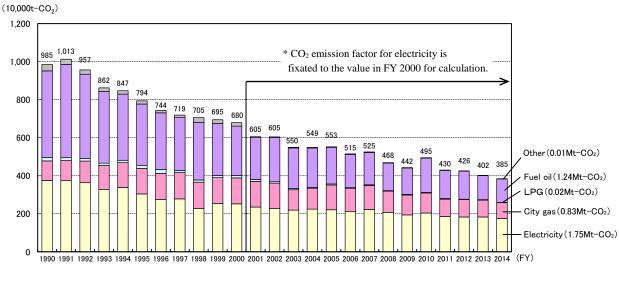



Figure 3-17 Trends in CO2 emissions in the industrial sector [Fixed cases]

#### 3.4.2-2 Commercial Sector

Trends in CO<sub>2</sub> emissions (fixed cases) in the commercial sector are as follows:

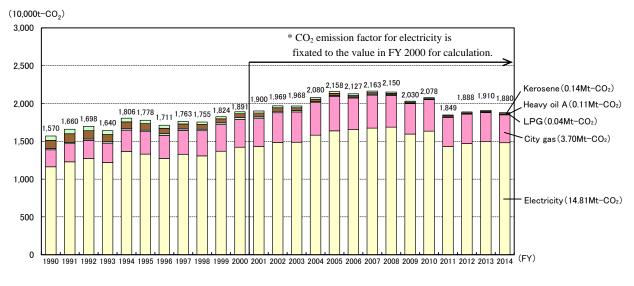
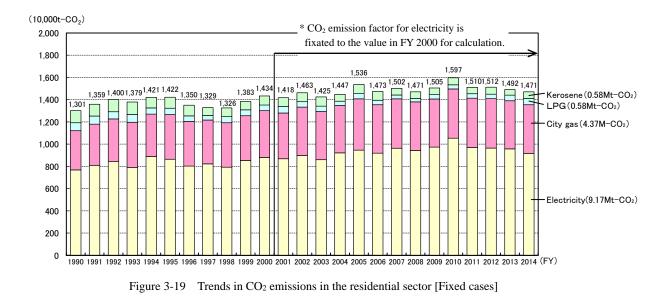




Figure 3-18 Trends in CO<sub>2</sub> emissions in the commercial sector [Fixed cases]

#### 3.4.2-3 Residential Sector

Trends in CO<sub>2</sub> emissions (fixed cases) in the residential sector are as follows:



#### 3.4.2-4 Transport Sector

Trends in CO<sub>2</sub> emissions (fixed cases) in the transport sector are as follows:

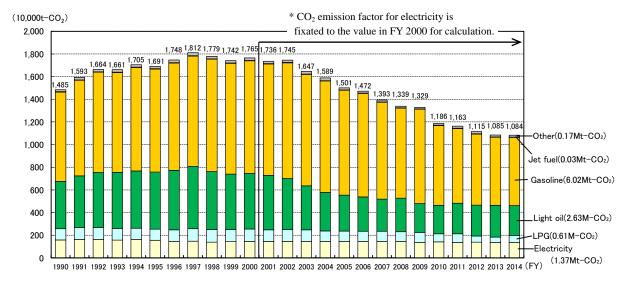



Figure 3-20 Trends in CO<sub>2</sub> emissions in the transport sector [Fixed cases]

### 3.5 Other GHG Emissions

### 3.5.1 Overview

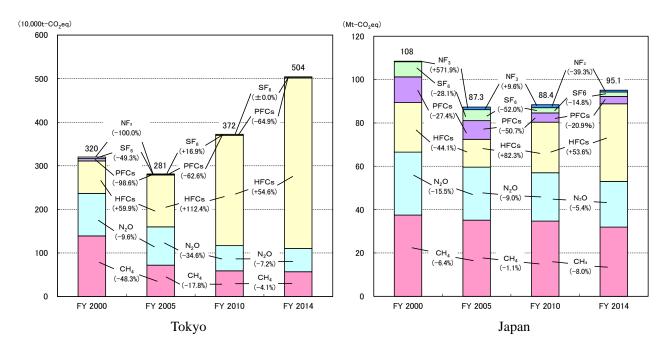
3.5.1-1 Trends in Other GHG Emissions

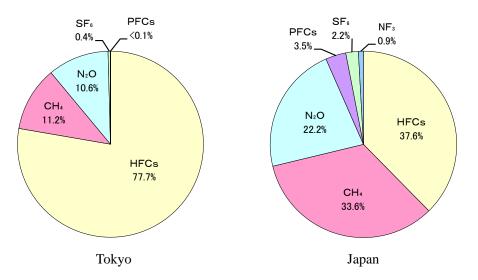
(Tokyo)

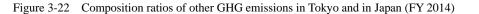
- Other GHG emissions in FY 2014 stood at 5.0 million t-CO<sub>2</sub>eq, which was 57% increase from 3.2 million t-CO<sub>2</sub>eq in FY 2000, and 35% increase from 3.7 million t-CO<sub>2</sub>eq in FY 2010.
- HFCs increased by 60% from FY 2000 to FY 2005, 112% from FY 2005 to FY 2010, and 55% from FY 2010 to FY 2014. This is because the substitution of HCFCs, which are regulated under the Montreal Protocol, by HFCs has proceeded, and consequently emissions from the coolant use of HFCs have increased.
- CH<sub>4</sub> and NO<sub>2</sub> have shown a downward trend since FY 2000.

(Japan)

- Other GHG emissions in Japan in FY 2014 stood at 95.1 million t-CO<sub>2</sub>eq, which was 12% reduction from 108 million t-CO<sub>2</sub>eq in FY 2000, and 7.6% increase from 88.4 million t-CO<sub>2</sub>eq in FY 2010.
- HFCs have declined by 44% from FY 2000 to FY 2005 due to a decrease in emissions of HFC-23, which is a by-product in manufacturing specific freon HCFC-22. Since then, due to an increase in the use of CFC substitute HFCs as a refrigerant application, it has increased by 82% from FY 2005 to FY 2010 and by 54% from FY 2010 to FY 2014.
- CH<sub>4</sub>, NO<sub>2</sub>, PFCs and SF<sub>6</sub> have shown a downward trend since FY 2000. On the other hand, NF<sub>3</sub> has shown a upward trend from FY 2000 to FY 2010, but in recent years there is a sign that starts to decrease.





Figure 3-21 Increase rates by GHG (other GHGs) in Tokyo and in Japan


Note: The values in brackets respectively indicate increase in FY 2005 from FY 2000, increase in FY 2010 from FY 2005, and increase in FY 2014 from FY 2010.

Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

### 3.5.1-2 Composition Ratios in Other GHG Emissions

- In Tokyo, HFCs accounted for 78% of other GHG emissions in FY 2014, followed by CH<sub>4</sub> (11%), N<sub>2</sub>O (11%), SF<sub>6</sub> (0.4%), and PFCs (< 1%).
- In Japan, HFCs accounted for 38% of other GHG emissions in FY 2014, followed by CH<sub>4</sub> (34%), N<sub>2</sub>O (22%), PFCs (3.5%), SF<sub>6</sub> (2.2%), and NF<sub>3</sub> (0.9%).
- Compared to the nationwide composition ratios of other GHG emissions in FY 2014, Tokyo sees a larger share of HFCs, and accordingly smaller shares of the other gases.





Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

#### 3.5.1-3 Shares of Other GHG Emissions in Japan

- Other GHG emissions in FY 2014 in Tokyo account for approximately 5.3% in Japan.
- By the type of gas, Tokyo takes up the largest share in Japan with HFCs (11%), followed by N<sub>2</sub>O (2.5%) and CH<sub>4</sub> (1.8%). Tokyo's shares are minimal for PFCs, SF<sub>6</sub>, and NF<sub>3</sub>.

|                  |       | (01111, 10, | $1001-CO_2 eq$ |
|------------------|-------|-------------|----------------|
|                  | Tokyo | Japan       | vs. Japan      |
| CH <sub>4</sub>  | 57    | 3,194       | 1.8%           |
| N <sub>2</sub> O | 54    | 2,110       | 2.5%           |
| HFCs             | 392   | 3,578       | 10.9%          |
| PFCs             | 0     | 336         | 0.0%           |
| SF <sub>6</sub>  | 2     | 207         | 1.0%           |
| NF <sub>3</sub>  | 0     | 83          | 0.0%           |
| Total            | 504   | 9,508       | 5.3%           |

| Table 3-11 Comparison of | other GHG emissions in Tokyo and in Japan (FY 2014) |  |
|--------------------------|-----------------------------------------------------|--|
|                          | $(U_{pit}; 10,000 \pm CO, ag)$                      |  |

Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

#### 3.5.2 CH<sub>4</sub>

- The composition ratios of CH<sub>4</sub> emissions in Tokyo and in Japan in FY 2014 are indicated below.
- In Tokyo, 95% of CH<sub>4</sub> emissions are derived from waste. "Waste" mainly refers to emissions from landfill sites (inner and outer central breakwater landfill sites) and from sewage treatment.

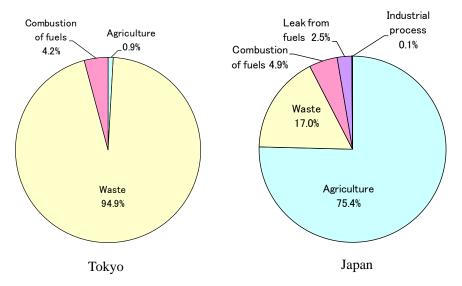
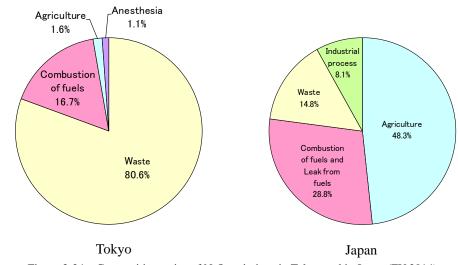




Figure 3-23 Composition ratios of CH<sub>4</sub> emissions in Tokyo and in Japan (FY 2014)

Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

#### 3.5.3 N<sub>2</sub>O

- The composition ratios of N<sub>2</sub>O emissions in Tokyo and in Japan in FY 2014 are indicated below.
- In Tokyo, 81% of N<sub>2</sub>O emissions are derived from waste. "Waste" mainly refers to emissions from the incineration of waste (general/industrial) and sewage treatment.



 $Figure \ 3-24 \quad Composition \ ratios \ of \ N_2O \ emissions \ in \ Tokyo \ and \ in \ Japan \ (FY \ 2014)$ 

Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

#### 3.5.4 HFCs and Three Other Types

- The composition ratios of HFCs and three other types of emissions in Tokyo and in Japan in FY 2014 are indicated below.
- In Tokyo, 92% of the emissions of these four gases are HFCs derived from coolants. "Coolants" mainly refers to emissions at the time of production, use, disposal of freezers and air conditioners for business use, household air conditioners, car air conditioners, etc.
- Unlike in the emission composition of entire Japan, "Manufacturing of semiconductors and LCDs", "Leak from manufacturing of HFCs and three other types", and "Metal production", etc. are excluded from the emission statistics of Tokyo, because the relevant factories are considered to be very rare in Tokyo.
- The addition of NF<sub>3</sub> to the list of GHGs was stipulated in the Partial Amendment to the Act on Promotion of Global Warming Countermeasures (Law No. 18, May 24, 2013) which took effect on April 1, 2015, but TMG excluded NF<sub>3</sub> from the emission statistics of Tokyo, because the relevant factories are considered to be very rare in Tokyo.

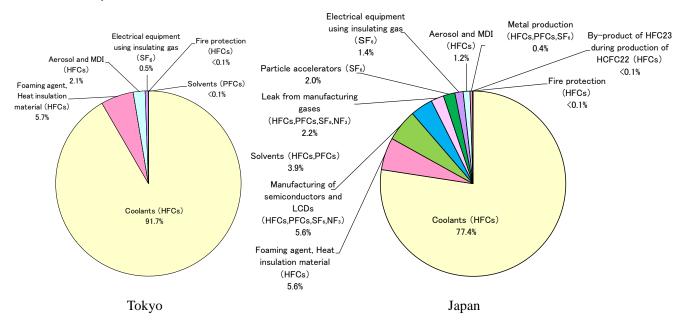



Figure 3-25 Composition ratios of HFCs and three other types of emissions in Tokyo and in Japan (FY 2014) Source: Preliminary figures for Japan's GHG Emissions Data (FY 1990 - 2015), Greenhouse Gas Inventory Office of Japan

## **4** Reference Materials

#### [Material 1] Calculation Methods for Final Energy Consumption and GHG Emissions (Overview)

(1) Final energy consumption and energy-derived CO<sub>2</sub> emissions

■ Fuel consumption and energy consumption are estimated by sectors based on statistical data, etc., and CO<sub>2</sub> emissions are calculated by multiplying the consumption by the emission factor.

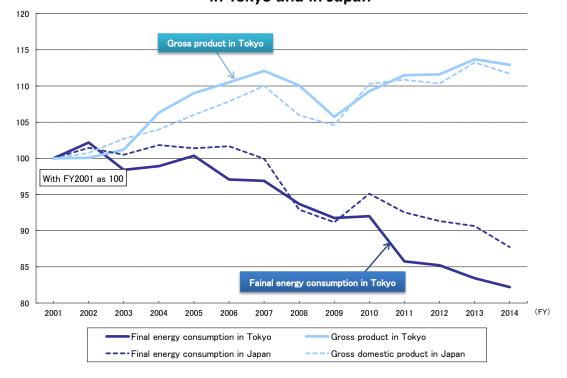
| Sectors           |                                         | Calculation methods (overview)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Key statistical data, etc.                                                                                                                                                                                                                                                                                                                         |  |
|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | Agriculture,<br>forestry and<br>fishery | Estimated based on utility cost (electricity/kerosene) per<br>farming household, fuel cost (heavy oil A) per fishing<br>management body, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>MAFF "Agricultural Management<br/>Statistics Report"</li> <li>MAFF "MAFF Statistics"</li> </ul>                                                                                                                                                                                                                                           |  |
| Industrial sector | Mining                                  | Estimated based on national mining energy consumption,<br>fuel and electricity cost rates in Japan and in Tokyo, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Agency for Natural Resources and<br/>Energy "Comprehensive Energy<br/>Statistics"</li> <li>MIC "Economic Census: Activity<br/>Survey"</li> </ul>                                                                                                                                                                                          |  |
|                   | Construction                            | National fuel consumption in the construction industry is<br>allocated in accordance with the construction sales rates in<br>Japan and in Tokyo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Agency for Natural Resources and<br/>Energy "Comprehensive Energy<br/>Statistics"</li> <li>MLIT "Comprehensive Statistical<br/>Yearbook for Construction"</li> </ul>                                                                                                                                                                      |  |
|                   | Manufactur-<br>ing                      | <ul> <li>Energy consumption is estimated based on energy data for business sites in Tokyo, product shipment amount by trade, etc.</li> <li>Consumption for the entire manufacturing industry is estimated based on energy consumption at soot emitting facilities.</li> <li>Composition of energy consumption by trade is estimated based on product shipment amount by trade, etc.</li> </ul>                                                                                                                                                                                                                                                   | <ul> <li>TMG "Soot Emission Survey<br/>Report"</li> <li>TMG "Industry in Tokyo:<br/>Industrial Statistics"</li> <li>METI "Petroleum Consumption<br/>Structure Statistics"</li> </ul>                                                                                                                                                               |  |
|                   |                                         | • Consumptions of electricity and city gas by the entire manufacturing industry are identified based on the contract type on the supply side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>TMG "Tokyo Statistical Yearbook"</li> <li>Sales data in Tokyo as provided by electricity utilities and gas utilities</li> </ul>                                                                                                                                                                                                           |  |
| Consumer sector   | Commercial                              | <ul> <li>Energy consumption is estimated by multiplying the energy consumption basic unit for each building application of business sites in Tokyo by the total floor area.</li> <li>Total floor area for each building application is calculated based on national statistical materials.</li> <li>The national average energy consumption basic unit for each building application has been adjusted in accordance with the actual status in Tokyo.</li> <li>Energy consumption composition for each building application is estimated based on data reported by large-scale business sites under the Tokyo Metropolitan Ordinance.</li> </ul> | <ul> <li>MIC "Summary Record of Prices<br/>for Fixed Assets"</li> <li>Institute of Local Finance "Public<br/>Facility Status Survey"<br/>(Sources for total floor area data)</li> <li>The Institute of Energy<br/>Economics, Japan "Energy<br/>Economics Statistics Summary"</li> <li>TMG "Global Warming Corrective<br/>Measures Plan"</li> </ul> |  |
|                   |                                         | • Consumptions of electricity and city gas by the entire commercial sector are identified based on the contract type on the supply side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>TMG "Tokyo Statistical Yearbook"</li> <li>Sales data in Tokyo as provided by electricity utilities and gas utilities</li> </ul>                                                                                                                                                                                                           |  |

|                  | Sectors                | Calculation methods (overview)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Key statistical data, etc.                                                                                                                                                          |  |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Consumer sector  | Residential            | <ul> <li>Energy consumption is estimated based on survey<br/>materials concerning household spending, etc.</li> <li>Consumptions of kerosene and LPG for all households<br/>are estimated based on fuel spending per household<br/>(single- or multiple-person households), unit prices for<br/>fuels, etc.</li> <li>* Gasoline and other fuels used for family cars are<br/>included in the transport sector.</li> </ul>                                                                     | <ul> <li>TMG "Living Standards of Tokyo<br/>Metropolitan Citizens (Tokyo<br/>Livelihood Analysis Report)"</li> <li>MIC "Household Economy<br/>Annual Report"</li> </ul>             |  |
| )r               |                        | • Consumptions of electricity and city gas by the entire residential sector are identified based on the contract type on the supply side.                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>TMG "Tokyo Statistical Yearbook"</li> <li>Sales data in Tokyo as provided by electricity utilities and gas utilities</li> </ul>                                            |  |
|                  | Road<br>Transportation | Traffic and CO <sub>2</sub> emissions by car type and by fuel type<br>are estimated based on measurement data provided by<br>TMG.<br>* The scope of calculation only includes traffic in Tokyo.                                                                                                                                                                                                                                                                                               | • TMG "Traffic and CO <sub>2</sub> emissions<br>by car type and by fuel type"                                                                                                       |  |
| Transpo          | Railways               | <ul> <li>(Passengers) The basic unit is calculated based on the power consumption and passenger kilometers of each railway company. The emissions are estimated by multiplying the basic unit by the passenger kilometers in Tokyo.</li> <li>(Freight) The national power consumption is allocated in accordance with the transportation tons in Japan and in Tokyo.</li> <li>* The scope of calculation only includes transportation in Tokyo.</li> </ul>                                    | <ul> <li>TMG "Tokyo Statistical Yearbook"</li> <li>MLIT "Railway Statistical<br/>Yearbook"</li> </ul>                                                                               |  |
| Transport sector | Navigation             | <ul> <li>(Passengers) The national fuel consumption is allocated in accordance with the passengers in Japan and in Tokyo.</li> <li>(Freight) The national fuel consumption is allocated in accordance with the transportation tons in Japan and in Tokyo.</li> <li>* The scope of calculation only includes navigation in Tokyo. The values for navigation outside Tokyo (from other parts of Japan to Tokyo, or from Tokyo to other parts of Japan) are calculated for reference.</li> </ul> | <ul> <li>MLIT "Coastal Vessel<br/>Transportation Statistics"</li> <li>MLIT "Passenger Regional<br/>Fluidity Survey"</li> <li>MLIT "Freight Regional Fluidity<br/>Survey"</li> </ul> |  |
|                  | Civil Aviation         | Fuel consumptions at airports are counted.<br>* The scope of calculation only includes navigation in<br>Tokyo. The values for navigation outside Tokyo (from<br>other parts of Japan to Tokyo, or from Tokyo to other<br>parts of Japan) are calculated for reference.                                                                                                                                                                                                                        | <ul> <li>MLIT "Airport Management<br/>Status Record"</li> <li>MLIT "Air Transportation<br/>Statistical Yearbook"</li> </ul>                                                         |  |

(2) Non-energy-derived CO<sub>2</sub> emissions

■ CO<sub>2</sub> emissions are calculated by multiplying the incineration of waste (on a dried basis) by the emission factor.

| Sectors      |                     | Calculation methods (overview)                                                                                                                                                                                                                                                                                                                        | Key statistical data, etc.                                                                                                                                                                                                                                                          |  |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Waste sector | General waste       | The incinerated amounts (on a dried basis) for waste<br>plastics and synthetic fiber dust are estimated based on the<br>incinerated amount (on a wet basis) in the Tokyo wards<br>area and in the Tama area, the composition ratios of waste,<br>the water content, etc., according to materials provided by<br>cleaning factories and other sources. | <ul> <li>Clean Authority of TOKYO 23<br/>Cities "Cleaning Service Annual<br/>Report" and "Survey Report on<br/>the Properties of Waste Delivered<br/>to Cleaning Factories"</li> <li>The Institute for Tokyo Municipal<br/>Research, "Tama Area Waste<br/>Status Survey"</li> </ul> |  |
| 7            | Industrial<br>waste | The incineration amounts of waste oil and waste plastics<br>are estimated based on materials concerning the treatment<br>of industrial waste.                                                                                                                                                                                                         | <ul> <li>TMG "Survey Report on Changes<br/>over Time in Industrial Waste"</li> <li>TMG "Performance Report on<br/>Industrial Waste Treatment "</li> </ul>                                                                                                                           |  |


#### (3) Other GHGs

Emissions are estimated based on statistical materials prepared by TMG and the national government.

| Sectors                                                                                  | Calculation methods (overview)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Key statistical data, etc.                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methane (CH <sub>4</sub> )                                                               | The main source of emission is the gas generated from<br>waste landfill sites. The emissions at inner and outer<br>central breakwater landfill sites are estimated using a<br>model that assumes a state of the successive resolution of<br>the waste.                                                                                                                                                                                                                                                                         | • TMG "Survey Results on the<br>Effective Use of Landfill Gas<br>(LFG) (March, 2004)"                                                                                                                                                              |
| Dinitrogen oxide<br>(N2O)                                                                | The main sources of emission are the incineration of<br>waste (general/industrial), sewage treatment at sewage<br>plants, and automobile driving. Emissions are estimated<br>based on statistical materials prepared by TMG and the<br>national government.                                                                                                                                                                                                                                                                    | <ul> <li>Ministry of the Environment<br/>"Survey Results on General Waste<br/>Treatment"</li> <li>TMG "Survey Report on Changes<br/>over Time in Industrial Waste"</li> <li>TMG "Performance Report on<br/>Industrial Waste Treatment "</li> </ul> |
| HFCs and three<br>other types<br>(HFCs, PFCs, SF <sub>6</sub> ,<br>and NF <sub>3</sub> ) | The main source of emission is coolants (HFCs) that are<br>emitted during the production, use, and disposal of<br>freezers and air conditioners. National emissions are<br>allocated in accordance with shipment amounts in Japan<br>and in Tokyo.<br>* Also for HFCs that are derived from foaming agents,<br>aerosols, etc., and for SF <sub>6</sub> that are derived from the use of<br>gas insulated transformers, etc., national emissions are<br>allocated in accordance with shipment amounts in Japan<br>and in Tokyo. | • METI materials for the Working<br>Group for Countermeasures<br>against CFCs, Manufacturing<br>Industry Subcommittee, Industrial<br>Structure Council                                                                                             |

#### [Material 2] Trends in Final Energy Consumption in Tokyo and Gross Domestic Product (GDP) in Tokyo

- To realize a vigorous sustainable city, it is necessary to aim at a state where economic growth does not link with increased energy/resource consumption ("decoupling").
- EU includes decoupling in its policy targets under the 6th Environmental Action Plan (2002). International arguments are also had at the sessions of OECD, United Nations Environment Programme (UNEP), etc.
- Trends in the final energy consumption in Tokyo and the gross product in Tokyo indicate that the decoupling has been in progress since FY 2001. TMG will farther promote smart energy and power conservation which are coexistent with economic growth.



Trends in final energy consumption and the gross product in Tokyo and in Japan

Sources: TMG "Prefectural Accounts of Tokyo"

Cabinet Office "System of National Accounts (GDP Statistics)"

Agency for Natural Resources and Energy "Energy Supply and Demand Performance"

#### [Material 3] Greenhouse Gas Reduction Target and Energy Reduction Target in Tokyo

- For greenhouse gas emissions, TMG sets the reduction target as a medium-term transit point configuration based on the reduced level of long-term required in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (October 2014), etc.
- For energy consumption, TMG sets the energy saving target at a level necessary to achieve the greenhouse gas reduction target.

#### Greenhouse gas reduction target

Reducing Tokyo's greenhouse gas emissions by 30% from the year 2000 level by the year 2030

<Targets by Sectors> by the year 2030

- Reduction by about 20% from the year 2000 level in the industrial and commercial sectors (about 20% reduction in the commercial sector)
- Reduction by about 20% from the year 2000 level in the residential sector
- Reduction by about 60% from the year 2000 level in the transport sector

Estimation results of greenhouse gas emissions

(Unit: Mt-CO<sub>2</sub> eq)

| 2000 | 2014                                       |                                                                                                                                                                                       | 2030                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2000 | 2014                                       | vs. 2000                                                                                                                                                                              | (target)                                                                                                                                                                                                                                                                                          | vs. 2000                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 57.7 | 60.6                                       | 5.0%                                                                                                                                                                                  | 38.8                                                                                                                                                                                                                                                                                              | - 33%                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25.7 | 29.3                                       | 14%                                                                                                                                                                                   | 20.1                                                                                                                                                                                                                                                                                              | - 22%                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.8  | 4.6                                        | - 32%                                                                                                                                                                                 | 4.2                                                                                                                                                                                                                                                                                               | - 38%                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18.9 | 24.7                                       | 31%                                                                                                                                                                                   | 16.0                                                                                                                                                                                                                                                                                              | - 15%                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14.3 | 19.7                                       | 37%                                                                                                                                                                                   | 11.1                                                                                                                                                                                                                                                                                              | - 23%                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17.7 | 11.6                                       | - 34%                                                                                                                                                                                 | 7.6                                                                                                                                                                                                                                                                                               | - 57%                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.4  | 6.6                                        | 50%                                                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                               | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 62.1 | 67.2                                       | 8.2%                                                                                                                                                                                  | 43.7                                                                                                                                                                                                                                                                                              | - 30%                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 25.7<br>6.8<br>18.9<br>14.3<br>17.7<br>4.4 | 57.7         60.6           25.7         29.3           6.8         4.6           18.9         24.7           14.3         19.7           17.7         11.6           4.4         6.6 | vs. 2000           57.7         60.6         5.0%           25.7         29.3         14%           6.8         4.6         - 32%           18.9         24.7         31%           14.3         19.7         37%           17.7         11.6         - 34%           4.4         6.6         50% | 2000         2014         vs. 2000         (target)           57.7         60.6         5.0%         38.8           25.7         29.3         14%         20.1           6.8         4.6         - 32%         4.2           18.9         24.7         31%         16.0           14.3         19.7         37%         11.1           17.7         11.6         - 34%         7.6           4.4         6.6         50%         4.9 |

Note 1: The CO<sub>2</sub> emission factor for electricity in 2030 is 0.37kg-CO<sub>2</sub>/kWh which is a voluntary target value of electric power industry based on the Long-term Energy Supply and Demand Outlook by the Government (July 2015).

Note 2: Other gases: Non-energy-derived CO<sub>2</sub> emissions, CH<sub>4</sub>, N<sub>2</sub>O, HFCs and three other types (HFCs, PFCs, SF<sub>6</sub>, and NF<sub>3</sub>)

#### Energy reduction target

Reducing Tokyo's energy consumption by 38% from the year 2000 level by the year 2030

<Targets by Sectors> by the year 2030

- Reduction by about 30% from the year 2000 level in the industrial and commercial sectors (about 20% reduction in the commercial sector)
- Reduction by about 30% from the year 2000 level in the residential sector
- Reduction by about 60% from the year 2000 level in the transport sector

| Estimation results of energy consumption |                   |      |      |               | (Unit: PJ) |               |
|------------------------------------------|-------------------|------|------|---------------|------------|---------------|
| 2000                                     |                   | 2014 | 2030 |               |            |               |
|                                          |                   | 2000 | 2014 | vs. 2000      | (target)   | vs. 2000      |
| Industrial and commercial sector         |                   | 342  | 284  | - 17%         | 246        | - 28%         |
|                                          | Industrial sector | 97   | 53   | - 45%         | 57         | - 41%         |
|                                          | Commercial sector | 245  | 231  | - 6.0%        | 189        | - 23%         |
| Residential sector                       |                   | 202  | 208  | 2.8%          | 144        | - 29 <b>%</b> |
| Transport sector                         |                   | 257  | 154  | - 40%         | 105        | - 59%         |
| Total energy consumptions                |                   | 801  | 646  | - 19 <b>%</b> | 495        | - 38%         |

# 5 Figures and Tables

### — Contents for Tables —

| Table 2-1 Heat conversion factors used in this survey (FY 2014).    2                                                        |
|------------------------------------------------------------------------------------------------------------------------------|
| Table 2-2 Final energy consumption by sector in Tokyo, and increases up to FY 2014                                           |
| Table 2-3 Final energy consumption by fuel type in Tokyo, and increases up to FY 2014                                        |
| Table 3-1 GHGs and main source(s) of emission    20                                                                          |
| Table 3-2   Categorization of carbon dioxides   20                                                                           |
| Table 3-3 CO <sub>2</sub> emission factors for electricity used in this survey                                               |
| Table 3-4 Categorized calculation methods based on CO <sub>2</sub> emission factors for electricity                          |
| Table 3-5 Trends in total GHG emissions in Tokyo [Variable cases]    22                                                      |
| Table 3-6 (Reference) Trends in total GHG emissions in Tokyo [Fixed cases]    22                                             |
| Table 3-7 Total CO <sub>2</sub> emissions by sector and increases up to FY 2014 in Tokyo [Variable cases]                    |
| Table 3-8 Total energy-derived $CO_2$ emissions by fuel type and increases up to FY 2014 in Tokyo [Variable cases] 24        |
| Table 3-9 Total CO <sub>2</sub> emissions by sector and increases up to FY 2014 in Tokyo [Fixed cases]                       |
| Table 3-10 Total energy-derived CO <sub>2</sub> emissions by fuel type and increases up to FY 2014 in Tokyo [Fixed cases] 28 |
| Table 3-11 Comparison of other GHG emissions in Tokyo and in Japan (FY 2014)                                                 |

## — Figures —

| Figure 1-1  | Energy-derived CO <sub>2</sub> emissions by country (2014)                                          | 1 |
|-------------|-----------------------------------------------------------------------------------------------------|---|
| Figure 2-1  | Domestic Energy Balance and Flow (Overview) (FY 2014)                                               | 2 |
| Figure 2-2  | Final energy consumption by sector in Tokyo (FY 2014)                                               | 3 |
| Figure 2-3  | Trends in final energy consumption by sector in Tokyo                                               | 4 |
| Figure 2-4  | Composition ratios in final energy consumption by sector in Tokyo                                   | 4 |
| Figure 2-5  | Trends in final energy consumption by fuel type in Tokyo                                            | 5 |
| Figure 2-6  | Composition ratios in final energy consumption by fuel type in Tokyo                                | 5 |
| Figure 2-7  | Final energy consumption by trade in the industrial sector                                          | 6 |
| Figure 2-8  | Composition ratios in final energy consumption by trade in the industrial sector                    | 6 |
| Figure 2-9  | Trends in final energy consumption by fuel type in the industrial sector                            | 7 |
| Figure 2-10 | Composition ratios in final energy consumption by fuel type in the industrial sector                | 7 |
| Figure 2-11 | IIP increases in manufacturing in Tokyo                                                             | 8 |
| Figure 2-12 | Comparison of IIP between Tokyo and Japan                                                           | 8 |
| Figure 2-13 | Trends in final energy consumption by building application in the commercial sector                 | 9 |
| Figure 2-14 | Composition ratios in final energy consumption by building application in the commercial sector     | 9 |
| Figure 2-15 | Trends in final energy consumption by fuel type in the commercial sector 1                          | 0 |
| Figure 2-16 | Composition ratios in final energy consumption by fuel type in the commercial sector 1              | 0 |
| Figure 2-17 | Trends in total floor area by trade in Tokyo1                                                       | 1 |
| Figure 2-18 | Trends in total floor area by trade in Japan1                                                       | 1 |
| Figure 2-19 | Trends in final energy consumption by household type in the residential sector                      | 2 |
| Figure 2-20 | Composition ratios in final energy consumption by household type in the residential sector 1        | 2 |
| Figure 2-21 | Trends in final energy consumption by fuel type in the residential sector 1                         | 3 |
| Figure 2-22 | Composition ratios in final energy consumption by fuel type in the residential sector 1             | 3 |
| Figure 2-23 | Trends in the number of households in Tokyo 1                                                       | 4 |
| Figure 2-24 | Comparison of the number of households between Tokyo and Japan 1                                    | 4 |
| Figure 2-25 | Trends in the ownership rates of home appliances in Tokyo 1                                         | 5 |
| Figure 2-26 | Comparison of energy consumption per household in Tokyo with Japan 1                                | 5 |
| Figure 2-27 | Progress of energy saving for air conditioners 1                                                    | 6 |
| Figure 2-28 | Progress of energy saving for electric refrigerators 1                                              | 6 |
| Figure 2-29 | Trends in final energy consumption by means of transportation in the transport sector 1             | 7 |
| Figure 2-30 | Composition ratios in final energy consumption by means of transportation in the transport sector 1 | 7 |
| Figure 2-31 | Trends in final energy consumption by fuel type in the transport sector 1                           | 8 |
| Figure 2-32 | Composition ratios in final energy consumption by fuel type in the transport sector 1               | 8 |
| Figure 2-33 | Trends in the number of registered vehicles in Tokyo 1                                              | 9 |
| Figure 2-34 | Trends in the traveling kilometers of vehicles in Tokyo 1                                           | 9 |

| Figure 3-1  | Image of GHG emissions in Tokyo                                                                       | . 21 |
|-------------|-------------------------------------------------------------------------------------------------------|------|
| Figure 3-2  | Trends in total GHG emissions in Tokyo [Variable cases]                                               | . 22 |
| Figure 3-3  | Composition ratios by GHG in Tokyo and in Japan [Variable cases]                                      | . 23 |
| Figure 3-4  | Increase rates by GHG in Tokyo and in Japan [Variable cases]                                          | . 23 |
| Figure 3-5  | CO2 emissions by sector in Tokyo (FY 2014) [Variable cases]                                           | . 24 |
| Figure 3-6  | Trends in total CO2 emissions by sector in Tokyo [Variable cases]                                     | . 25 |
| Figure 3-7  | Composition ratios in total CO2 emissions by sector in Tokyo [Variable cases]                         | . 25 |
| Figure 3-8  | Trends in CO <sub>2</sub> emissions in Japan                                                          | . 26 |
| Figure 3-9  | Composition ratios in CO2 emissions in Japan                                                          | . 26 |
| Figure 3-10 | Trends in energy-derived CO2 emissions by fuel type in Tokyo [Variable cases]                         | . 27 |
| Figure 3-11 | Composition ratios in energy-derived CO <sub>2</sub> emissions by fuel type in Tokyo [Variable cases] | . 27 |
| Figure 3-12 | CO2 emissions by sector in Tokyo (FY 2014) [Fixed cases]                                              | . 28 |
| Figure 3-13 | Trends in total CO2 emissions by sector in Tokyo [Fixed cases]                                        | . 29 |
| Figure 3-14 | Composition ratios in total CO2 emissions by sector in Tokyo [Fixed cases]                            | . 29 |
| Figure 3-15 | Trends in energy-derived CO2 emissions by fuel type in Tokyo [Fixed cases]                            | . 30 |
| Figure 3-16 | Composition ratios in energy-derived CO <sub>2</sub> emissions by fuel type in Tokyo [Fixed cases]    | . 30 |
| Figure 3-17 | Trends in CO2 emissions in the industrial sector [Fixed cases]                                        | . 31 |
| Figure 3-18 | Trends in CO2 emissions in the commercial sector [Fixed cases]                                        | . 31 |
| Figure 3-19 | Trends in CO2 emissions in the residential sector [Fixed cases]                                       | . 32 |
| Figure 3-20 | Trends in CO2 emissions in the transport sector [Fixed cases]                                         | . 32 |
| Figure 3-21 | Increase rates by GHG (other GHGs) in Tokyo and in Japan                                              | . 33 |
| Figure 3-22 | Composition ratios of other GHG emissions in Tokyo and in Japan (FY 2014)                             | . 34 |
| Figure 3-23 | Composition ratios of CH4 emissions in Tokyo and in Japan (FY 2014)                                   | . 35 |
| Figure 3-24 | Composition ratios of N2O emissions in Tokyo and in Japan (FY 2014)                                   | . 35 |
| Figure 3-25 | Composition ratios of HFCs and three other types of emissions in Tokyo and in Japan (FY 2014)         | . 36 |

# Final Energy Consumption and Greenhouse Gas Emissions in Tokyo (FY 2014)

Issued in March, 2017Edited/issued by:Planning Section, Climate Change and Energy Division,<br/>Bureau of Environment, Tokyo Metropolitan Government2-8-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo, JAPAN163-8001Tel: +81-3-5388-3486Entrusted with:Sogo Environment Planning Co., Ltd.<br/>KDX Monzen-nakacho Building, 1-14-1 Botan, Koto-ku,<br/>Tokyo, JAPAN 135-0046Tel: +81-3-5639-1951



For more details, please visit the website of the Bureau of Environment Tokyo Metropolitan Government at: http://www.kankyo.metro.tokyo.jp/en/climate/index.html (Comprehensive website on countermeasures against climate change, Tokyo)

