
植物起源VOCの都内排出量推計 に関する調査

(2016年度~2018年度)

報告 : 東京都環境科学研究所 環境資源研究科

國分優孝

「植物起源 VOC(BVOC)」は、反応性が高く、 NOx高濃度の都市大気では、オキシダント生成への寄与が大きい可能性がある

未把握のBVOC放出量を把握し、人為起源VOC削減目標に反映する必要がある

課題と目的:

郊外の樹木の観測例は多くあるが、都市での観測データは殆ど存在しない

BVOC 放出特性

- ·放出成分
- •放出量
- •放出時期

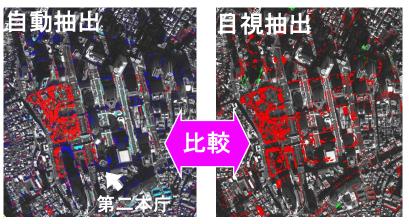
「BVOC放出特性」は、生育環境(郊外 vs 都市)で異なる可能性がある

目的: 都内市街地(23区)全体の樹木が放出するBVOCを把握する

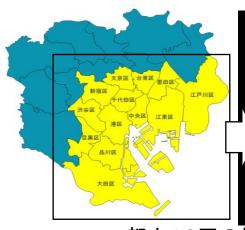
① 都内区部全域の樹木資源(分布、総葉重量、総葉面積)の把握

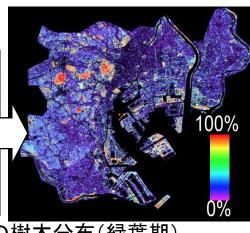
「衛星画像解析」

② 樹木からの単位BVOC放出量(葉重量・葉面積あたり)の観測


「大学共同研究」

① × ② から 都内区部全域からのBVOC放出量の全体像の把握を試みる


① 都内区部全域の樹木資源の把握


衛星画像解析による樹木分布の推定

- ・画像輝度値から地表物から樹木を抽出(昨年手法の高精度化)
- ・緑葉期と落葉期の差から常緑樹と落葉樹の分布を推定

面積誤差5%以内で 樹木を自動抽出できる技術を構築

World View 2

都内13区の樹木分布(緑葉期)

都内13区における常緑樹と落葉樹別の総葉重量

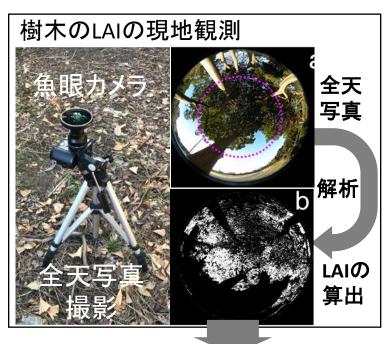
都内13区の樹木面積 (緑葉期)

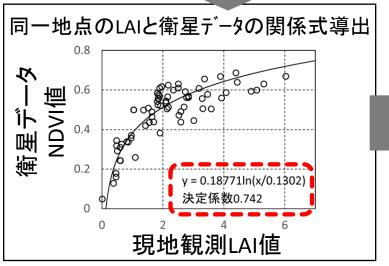
- •常緑樹 17 km²
- ·落葉樹 24 km²
- ※衛星データ推計

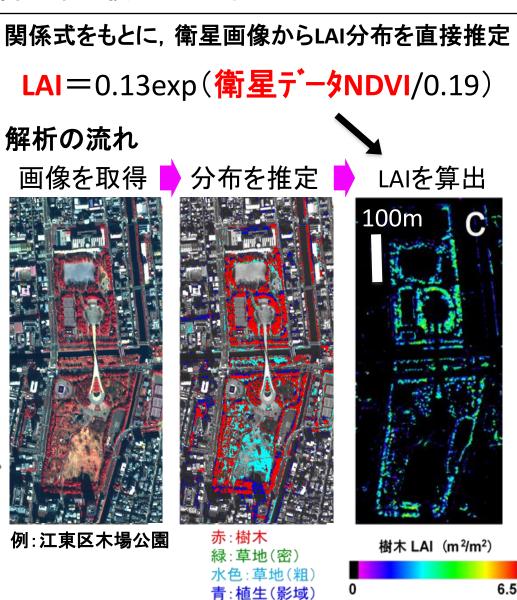
都内の広葉樹 単位地表面積あたりの葉重量

平均0.54 kg/m²

※JATOP推計

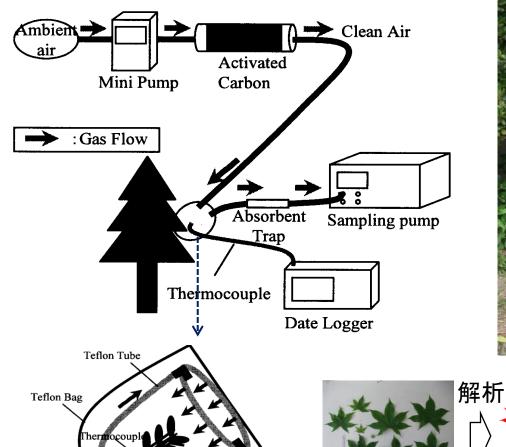

総葉重量 (緑葉期)


- ・常緑樹 9,000トン
- ・落葉樹 13,000トン


しかし、大気質シミュレーションの活用には、計算入力データに樹木の「葉面積分布」が必要

① 都内区部全域の樹木資源の把握

衛星画像から単位地表面積あたりの**樹木葉面積(LAI)分布**を推定する技術を確立



② 樹木からの単位BVOC放出量の観測 (静岡県立大共同研究)

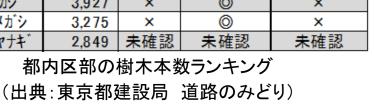
「枝チャンバー法」 橋本ら(2009) 概念図より

Sampling ^l

Clean Air

葉面積=0.11 m²

「単位BVOC放出量」 が求まる

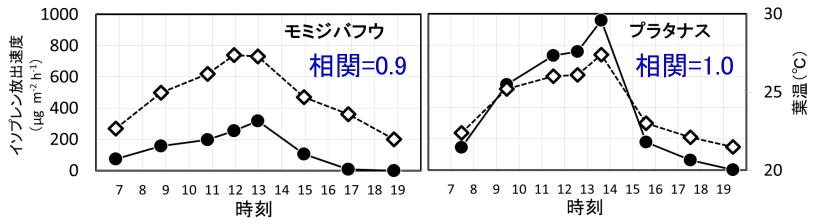

> 葉面積あたりの BVOC放出速度 $(\mu g m^{-2} hour^{-1})$

枝チャンバー内の空気を採取(2L)枝チャンバー内の葉面積を算出

② 樹木からの単位BVOC放出量の観測

- 対象種:23区本数上位20種のうち、2015年予備観測で大量放出(◎)を確認した種
- ■観測場所:「下水道局森ケ崎水再生センター」(プラタナス、モミジバフウ、シラカシ、ウバメガシ) 「東京都環境科学研究所」(ヤマモモ、クスノキ)

			区部合計	放出BVOCの成分とおおよその量					
	順位	樹種名	本数	イソプレン	モノテルヘン類	セスキテルヘン類			
	1	イチョウ	39,118	×	×	×			
	2	プラダナス類	28,367	0	×	×			
	3	ハナミス゛キ	26,892	0	0	0			
	4	サクラ類	26,360	×	×	×			
	5	トウカエテ゛	15,562	未確認	未確認	未確認			
	6	クスノキ	13,974	×	0	×			
	7	ケヤキ	13,282	×	×	×			
	8	マテバシイ	12,510	×	0	×			
	9	ヤマモモ	11,119	×	0	×			
	10	エンジュ類	7,335	0	0	×			
	11	モミシ゛バ゛フウ	6,830	0	0	0			
,	12	コブシ	5,685	×	×	×			
	13	ユリノキ	5,585	×	×	×			
	14	サルスベリ類	5,052	0	0	×			
	15	アオキ゛リ	4,887	×	×	×			
	16	ヅハ・キ類	4,593	未確認	未確認	未確認			
	17	アキニレ	4,349	×	×	×			
	18	シラカシ	3,927	×	0	×			
	19	ウバメカ゛シ	3,275	×	0	×			
	20	シダレヤナキ゛	2,849	未確認	未確認	未確認			


測定対象樹種

② 樹木からの単位BVOC放出量の観測

BVOC放出速度(一日の最大値) ◎◎は1000以上、◎は100~1000程度、○は0~100程度

		ウバメガシ	クスノキ	シラカシ	プラタナス	モミジバフウ	ヤマモモ		
BVOC放出成分		BVOC放出速度(μg m ⁻² h ⁻¹)							
イソ	イソプレン		2.6	0	957.5	317.3	8.4		
	α -ピネン	3586.5	13.9	0	0	18.8	21.5		
	β -ピネン	1952.2	10.9	0	0	5.4	28.0		
	α -テルピネン	228.2	0	0	0	0	0		
	γ -テルピネン	341.8	0	0	0	0	0		
	β -リナロール	68.8	23.7	0	0	0	0		
モノテルペン類	β −オシメン	00	00				00		
	リモネン	0				0			
	サビネン	0							
	β -フェランドレン	0			{				
	テルピノレン	0							
	カンファー				}				

樹種毎に、多く放出しているBVOC成分が明らかになってきた

BVOC放出量の明確な温度依存性を確認できた

① 都内区部全域の樹木資源の把握

衛星画像を用いた樹木の資源総量を推計する技術の確立

- 分布: 昨年開発の画像処理技術を改良、樹木分布の自動抽出精度を向上 常緑樹と落葉樹を区別して、都内13区全域での分布を推定
- ・葉重量: 常緑樹と落葉樹について、都内13区における総量を推計
- ・葉面積:区部全体での総量と分布を推計することが可能となった

② 樹木からの単位BVOC放出量の観測

- ・静岡県立大学との共同研究体制を確立し、高精度なBVOC観測技術を導入
- 23区の植樹本数上位20種について、季節毎の観測を行う体制が整った
- ・都内6樹種が放出するBVOC成分と、放出量の温度依存性が確認できた

2017年度

- ① 衛星画像解析による樹木の資源量調査
 - ・今年度開発の**「葉重量」推計手法**を用いて、**残り10区の葉重量**を算出
 - ・今年度開発の**「葉面積」推定手法**を用いて、**都内区部の葉面積**を推計
- ② 樹木からの単位BVOC放出量の観測
 - ・優先6樹種の**放出量の季節変動**を観測 」四季別(年4回以上)の調査 森ヶ崎水再生センターと都環研で調査 【1樹種、1季で10試料ずつ測定

2018年度 以降

- ・観測結果と樹木資源量をもとに**,都内区部のBVOC放出総量**を把握
- ・生育環境(市街地 vs 郊外)放出量を比較し、都市樹木の放出特性を把握
- ・放出量データを大気質シミュレーションへ組込み、BVOCの都市大気への影響を予測

- 人為起源VOCとBVOCの、Ox生成への寄与割合の正確な把握
- Ox対策における人為起源VOC削減目標への定量的提言を行う