

趣旨

- •VOCの連続測定は、発生源対策の効果検証が主な目的
- •その中で連続測定データを活用し、過去に3回、解析調査を実施
- ◎今後、環境基準等の達成が求められる光化学オキシダント等の 改善に向けて、短期的及び中長期的な視点にたってVOC連続測 定のモニタリング体制を検討
 - (1)短期的視点
 - ・光化学オキシダント生成機構の把握
 - (2)中長期的視点
 - •VOCインベントリの検証、自動車技術革新等の社会状況変化
 - (3)その他
 - •VOC測定技術について 等

VOC連続測定について(概要)

- 1 目的
 - 有害大気汚染物質調査の常時監視だけでは把握できない1時間毎の挙動を把握し、より詳細で効果的なVOC削減対策の検討や効果の検証に活用
- 2 調査頻度1時間ごと(10分間試料採取)
- 3 調査対象物質及び分析法 大気測定局に設置したGC/MSにより測定 96成分を対象とし、下表の16成分を優先的に定量化

1	塩化ビニルモノマー	9	四塩化炭素
2	1,3-ブタジエン	10	トリクロロエチレン
3	アクリロニトリル	11	トルエン
4	ジクロロメタン	12	テトラクロロエチレン
5	1,1-ジクロロエタン	13	エチルベンゼン
6	クロロホルム	14	m,p-キシレン
7	1,2-ジクロロエタン	15	o-キシレン
8	ベンゼン	16	スチレン

VOC連続測定・測定地点

4 調査地点

⑥練馬区石神井町局

0 0

4か所の大気測定局で調査

⑫東大和市奈良橋局

(大田区東糀谷、江東区大島、世田谷区八幡山、板橋区氷川町)

調査地点名	有害調査	VOC 多成 分	連続計	調査地点名	有害 調査	VOC 多成 分	連続計	調査地点名	有害 調査	VOC 多成 分	連続計	調査地点名	有害調査	VOC 多成 分	連続計
①中央区晴海局	0	0		⑦足立区西新井局	0	0		⑬西多摩郡檜原局	0	0		1 京葉道路亀戸局(沿道)	0	0	
②国設東京新宿局	0	0		⑧江戸川区春江町局	0	0						② 環八通り八幡山局(沿道)	0	0	0
③大田区東糀谷局	0	0	0	⑨八王子市片倉町局	0			◎江東区大島局			0	◯ 甲州街道大原(沿道)		0	
④世田谷区世田谷局	0	0		⑩八王子市大楽寺町局	0							■ 中山道大和町(沿道)		0	
⑤板橋区氷川町局	0	0	0	⑪小金井市本町局	0	0									

解析調査の内容及び結果

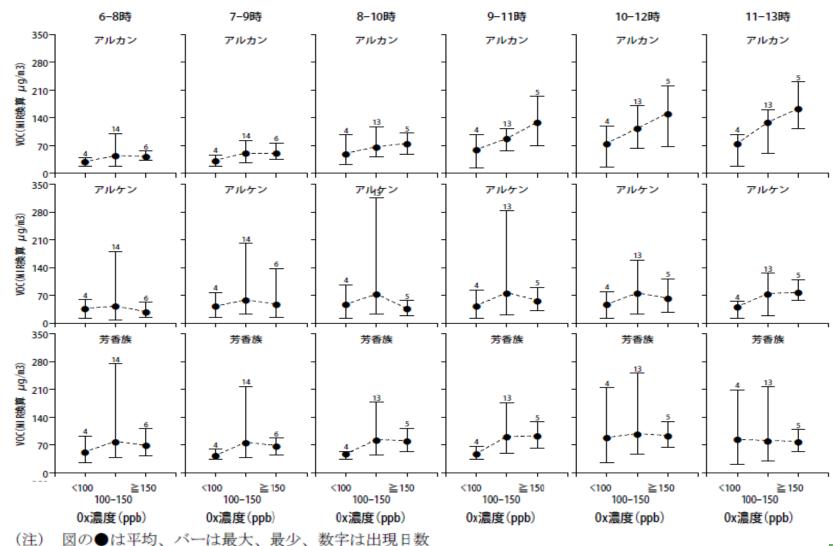
- VOC連続測定の結果等を活用して解析調査を実施 《調査対象》
 - •2011(平成23)年度
 - •2013(平成25)年度
 - •2014(平成26)年度
- ・ 生成機構が解明しきれていない光化学オキシダントとVOC成分の関連性に係る調査内容に絞って概要を 提示

解析調査の内容及び結果①

① 2011(平成23)年度調査(区部)

【目的】 VOCの組成変化をシミュレーションにより確認

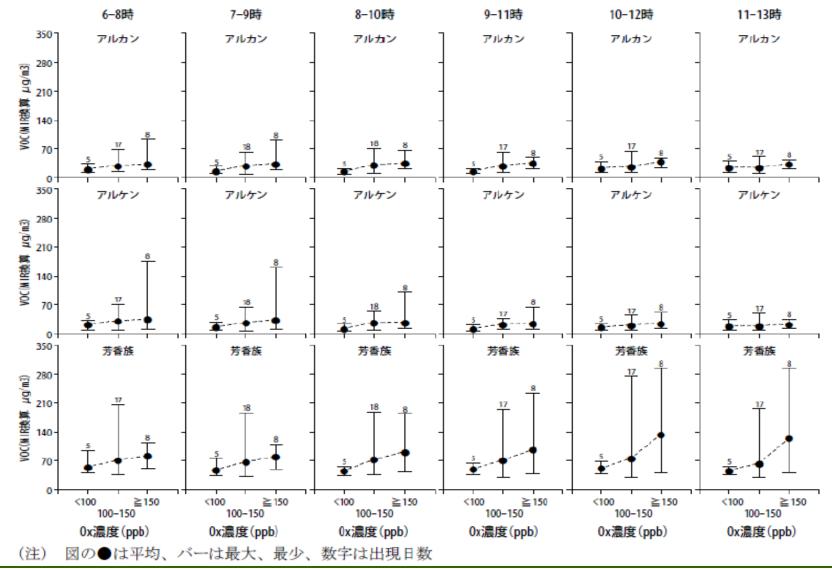
- ・ オゾン生成シミュレーションを実施後、光化学オキシダント実測値と大きな差異がないことを確認
 - ※ワンボックスモデル、化学反応モデルはCBMIV アルデヒド類等は、有害大気汚染物質調査の結果を利用
- ・ 総VOC濃度及びNOx濃度が同程度で、光化学オキシダント 濃度が異なる計算結果が出た時のVOC成分別濃度を把握
- MIR[※]が高い物質により光化学オキシダント濃度が影響を 受けることが示唆
 - (例)m,p-エチルトルエン、1,2,4-トリメチルベンゼン等
 - ※単位VOC 量(g)が生成しうるオゾン量(g)を示す最大オゾン生成能 (Maximum Incremental Reactivity の略)


解析調査の内容及び結果②

- ②2013(平成25)年度調査(区部)
 - 【目的】光化学オキシダント高濃度時の気象条件日を対象に 生成に寄与するVOC成分を確認
 - ・ 一都六県の光化学オキシダント濃度と連続測定で得られた VOC成分濃度の関係を調査
 - * 光化学オキシダント濃度120 ppb以上の気象条件日 積算日射量:17 MJ/m²以上、日最高気温:30 ℃以上、6~12時の平均風 速:4 m/s以下、風向:9~11時に南風
 - VOC物質群(MIR換算)とオキシダント濃度の関係(別図1)
 - ・ 光化学オキシダント濃度の増加に従い、大田 反応性が低いアルカンの濃度増加が顕著江東 芳香族炭化水素濃度が増加する傾向

別図オキ

別図1 (その1) オキシダント濃度とVOC物質群(MIR換算)濃度との関係

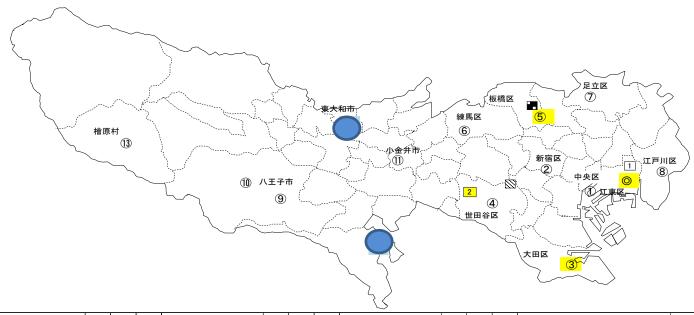

【大田区(一部)】

別図1(その2) オキシダント濃

オキシダント濃度とVOC物質群(MIR換算)濃度との関係

【江東区(一部)】

解析調査の内容及び結果③(その1)


- ③ 2014(平成26)年度調査(多摩地域) 《調査1》多摩地域の光化学オキシダント生成機構の特徴を把握
 - ・ 高濃度気象条件日を対象に、VOC連続測定データと多摩地域の日最大光化学オキシダント濃度を比較
 - * 光化学オキシダント濃度120 ppb以上の気象条件日(対象日 58日間) 小金井局で日最高気温30 ℃以上、日積算日射量15 MJ/m²以上

- ・光化学オキシダント濃度増加時のVOC成分の状況(別表1)
- ・町田の午前及び午後の結果に注目し、光化学オキシダント 高濃度時に大きく増加したVOC成分があることを確認

+

多摩地域の測定地点

◎多摩地域の測定地点[2010(平成22)年~2015(平成27)年]※青色部分

								~							
調査地点名	有害 調査		連続計	調査地点名	有害 調査	VOC 多成 分	連続計	調査地点名	有害 調査		連続計	調査地点名	有害 調査	VOC 多成 分	
①中央区晴海局	0	0		⑦足立区西新井局	0	0		⑬西多摩郡檜原局	0	0		1 京葉道路亀戸局(沿道)	0	0	
②国設東京新宿局	0	0		⑧江戸川区春江町局	0	0						② 環八通り八幡山局(沿道)	0	0	0
③大田区東糀谷局	0	0	0	⑨八王子市片倉町局	0			◎江東区大島局			0	☑ 甲州街道大原(沿道)		0	
④世田谷区世田谷局	0	0		⑩八王子市大楽寺町局	0							■ 中山道大和町(沿道)		0	
⑤板橋区氷川町局	0	0	0	⑪小金井市本町局	0	С		●町田市能ヶ谷局			*				

0

×

⑫東大和市奈良橋局

※平成22年から平成27年まで設置

⑥練馬区石神井町局

別表 1 Ox高濃度気象条件時のVOC成分濃度(MIR換算)

別表1 Ox高濃度気象条件時のMIR換算VOC成分濃度(VOC連続測定より)

刀14×1	UX向展及风象采件时间	ノ IVI II (15)	· 弁 VOC/以力] (反) (又)	、VOC達別品	別により	<i>')</i>	1					
					町田			東大和					
	11 ES 4		朝		午前	午後		朝		午前			午後
MIR		(7-9時)		(10-12時)		(13-15時)		(′	(7-9時)		(10-12時)		(13-15時)
MIK	物質名	0.120	Ox高濃度時	0.100	Ox高濃度時	0.120	Ox高濃度時	0.100	Ox高濃度時	0.100	Ox高濃度時	0.100	Ox高濃度時
		Ox120	に増加して	Ox120	に増加して	Ox120	に増加して	Ox120	に増加して	Ox120	に増加して	Ox120	に増加して
		以上	いた物質	以上	いた物質	以上	いた物質	以上	いた物質	以上	いた物質	以上	いた物質
4.00	Toluene	26.97	**	16.18	**	13.21	**	33.16	**	20.56	*	16.83	*
3.04	Ethylbenzene	5.29	**	2.91	*	3.09	**	6.30	*	4.66	*	3.02	
7.80	m,p-Xylene	11.69	*	5.72	*	5.17	*	14.70	*	9.40	*	5.87	
7.64	o-Xylene	4.16	*	2.16	*	2.07	**	5.60	*	3.39	*	2.32	
1.23	iso-Butane	2.32	**	1.53	***	1.87	***	1.36	*	0.88		1.11	**
9.73	1-Butene	4.13	**	3.43	**	3.71	***	3.53	*	2.69		3.06	*
1.15	n-Butane	3.71	**	2.59	***	3.49	***	3.42	*	2.18		3.15	***
1.45	iso-Pentane	4.28	**	2.87	**	5.49	***	3.23	*	2.27		3.35	*
7.21	1-Pentene	1.43		0.76		1.85	***	1.24	*	0.61		1.08	*
1.31	n-Pentane	2.05	*	1.40	*	3.13	***	2.13	*	1.43	*	1.91	**
10.38	cis-2-Pentene	1.54		0.56		0.55		1.39		0.73		1.50	*
10.61	2-Methl-1,3-butadiene	15.75	*	10.49		11.87	*	26.10	***	21.65	***	17.61	***
0.97	2,3-Dimethylbutane	1.17	*	0.77		1.04	***	1.03	*	0.65		0.74	
1.80	3-Methylpentane	1.32	*	0.86		1.10	***	1.25	*	0.74		0.85	
1.24	n-Hexane	1.19	*	0.65		1.09	***	1.27	**	0.66		0.71	
5.92	m,p-Ethyltoluene	4.16	*	2.34	*	2.25	*	5.23	*	2.26		1.60	
11.76	1,3,5-TMB	2.54	*	1.38	*	1.14	*	3.80	**	1.04		0.94	
	o-Ethyltoluene	1.19	*	0.71		0.68		1.64	*	0.80		0.57	
	1,2,4-TMB	7.35	*	3.66		3.49	*	10.88	*	4.34		3.26	
	1,2,3-Trimethylbenzene	2.08	*	1.14	*	1.01	*	3.04	*	1.58	*	1.22	
4.51	Camphene	3.25	*	1.03	*	0.78		5.27	*	1.68	*	1.58	**

注) Ox120以上: Ox120ppb以上時のMIR換算濃度の平均値(μg/m³)

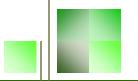
Ox高濃度時に濃度が増加する物質: Ox120ppb以上/Ox80ppb未満 *:1.0~1.5 **:1.5~2.0 ***:2.0以上

Oxが高濃度でも増加しない成分(変化割合で*がつかない成分)は表には記載していない

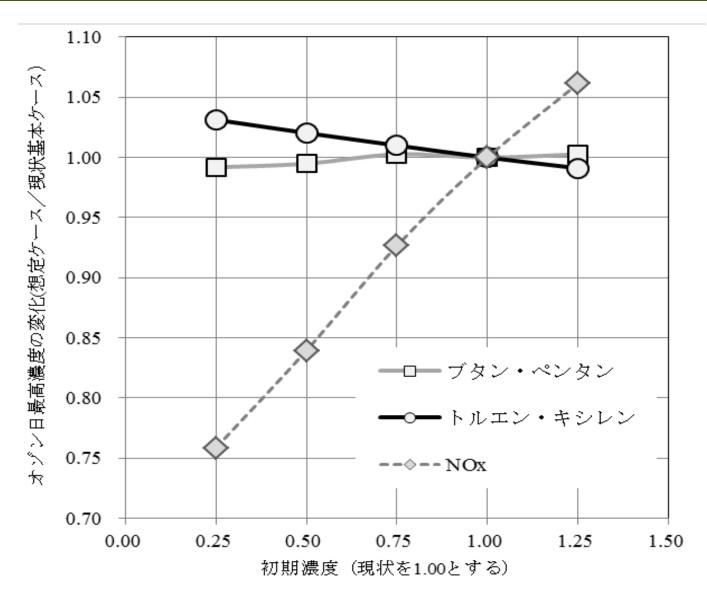
解析調査の内容及び結果③(その2)

- 【目的】都環研が実施した観測結果(アルデヒド類等)を基に、 多摩地域の光化学オキシダント生成機構の特徴を把握
 - ・ 光化学オキシダント濃度増加時の町田と3時間後の東大和でのVOC成分を把握、濃度が減少する物質を確認
 - ・ VOC成分やNOxを減少させた場合のオゾン生成シミュレーションも実施(調査手法:2011(平成23)年度と同様)
 - VOC成分濃度の増減(表1)
 - 減少物質として、MIRが大きいキシレン、エチレン、プロピレン等を確認
 - アルデヒド類は増加、二次生成によるものと推測(表2)
 - ・ シミュレーション結果では、VOC成分よりNOxを減らす方が 光化学オキシダント削減に寄与することが示唆(図1)

表1、2 Ox増加時に増減するVOC成分

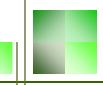

《町田•調査結果》

(減少)


物質名	MIR	ΔVOC/ΔΟχ
Toluene	4.00	-0.044
Ethane	0.28	-0.025
Methylethylketone	1.48	-0.022
Isopentane	1.45	-0.019
Propane	0.49	-0.017
n-Pentane	1.31	-0.010
Ethylene	9.00	-0.010
m+p-Xylene	7.80	-0.010
2-Methylpentane	1.50	-0.009
3-Methylpentane	1.80	-0.006
Propylene	11.66	-0.005
Benzene	0.72	-0.005
Trichloroethylene	0.64	-0.005
Butylacetate	0.83	-0.005
2-Methyl-1,3-butadiene(イソフ゜レン)	10.61	-0.003

(増加)

物質名	MIR	ΔVOC/ΔΟχ
Formaldehyde	9.46	0.037
Acetaldehyde	6.54	0.024


図1 VOC及びNOx濃度を増減させた時のシミュレーション

解析調査の内容及び結果④

- ④ 2017(平成29)年度調査(都環研調査)
 - 【目的】東京湾沿岸部の工業地域における、光化学オキシダント 生成に影響の大きいVOC成分や発生源を把握する。
 - ・ 東京23区南部の工業地域で、約3 km四方の範囲で複数地 点の大気を測定
 - ・ 調査は2017 (平成29) 年度の各季節1回、キャニスター により2時間ごとに24時間採取、GC/MS/FIDにより125物質の VOC濃度を測定
 - 狭い調査地域の中で、各地点のオゾン生成能に差異
 - 地点間の差が大小の物質があり。
 大きい物質 トルエン、m,p-キシレン 小さい物質 エチレン、プロピレン
 - 前者は濃度の高い地点の近くにその発生源がある成分、後者は調査対象地域外からの移流の影響が大きい成分と推測

(1)短期的な視点

- ◎ 光化学オキシダント生成機構の把握
 - ・オキシダント生成能の高い物質の挙動の把握又は解明
 - •オキシダント濃度の低減に向けた対策等への効果的な活用

(1)短期的な視点②

①測定対象物質

(課題)

解析結果から、16成分以外にオキシダント生成に大きく影響 する物質がある

(方向性)

- ・ 比較的、大気環境中濃度が高く、都内排出量の多い物質で光 化学オキシダント生成に寄与する物質を対象候補として検討
- 生成に大きく影響する物質の他、アルデヒド類も、二次生成により増加する物質であるため対象候補として検討

(1)短期的な視点③

(方向性)

測定対象候補物質のうち、次の物質を16成分同様に定量対象として追加

iso-ペンタン、n-ペンタン、2-Methyl-1,3-butadien、m,p-エチルトルエン、1,2,4-トリメチルベンゼン及び1,3,5-トリメチルベンゼン (プロピレンは、測定精度が低いことから定量対象としない)

◎測定対象候補

物質名	MIR	VOC 連続測定	物質名	MIR	VOC 連続測定
トルエン	5.3	0	プロピレン	11.66	0
エタン	0.28	×	2-Methyl-1,3-butadien	10.61	0
メチルエチルケトン	1.48		m,p-エチルトルエン	5.92	0
iso-ペンタン	1.45	0	1,2,4-トリメチルベンゼン	8.87	0
プロパン	0.49	×	1,3,5-トリメチルベンゼン	11.76	0
n-ペンタン	1.31	0	ホルムアルデヒド	9.46	×
エチレン	9.00	×	アセトアルデヒド	6.54	×
m,p-キシレン	7.80	0			

◎: 測定対象、優先的に定量、 O: 測定対象、定量対象外、 ×: 測定対象外

(1)短期的な視点④

②測定地点

(課題)

- 多摩地域は、解析調査により有用な知見が得られ、生成機構の把握が前進
 - ※2014(平成26)年度解析結果参照
- 区部では生成機構の解析等、解明に向けたより一層の対応 が必要

(方向性)

- ・ 当面の間、現状を維持 その他、経年的な対策効果の把握や解析等に活用
- オキシダント高濃度時の夏場は、南北方向での配置が必要 (区部では、大田と板橋がこの関係性)

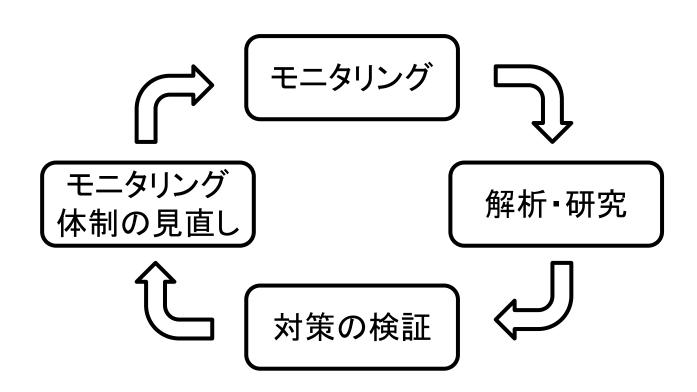
(2)中長期的な視点

- 1 VOCインベントリの検証への活用
 - 都では5年に1回のVOC排出インベントリの推計を実施
 - ⇒ 多様なVOC成分のモニタリングを行っていることから、インベントリの検証にも活用が可能
- 2 自動車技術革新等の社会状況変化への対応
 - ガソリン車から燃料電池・電気自動車へとシフトしていく中で、 自動車からのNOx及びVOC排出量は減少していくと想定
 - ⇒ 自動車排ガスの影響の把握を目的に、沿道での測定地点の 見直しを図る等の検討が必要

(3) VOC測定技術について

◎現状 各物質ごとの連続測定の可否

物質	連続測定 の可否	現在のモニタリング方法	備考
エタン、エチレン、プロパン等の低沸点物質	×	VOC多成分分析(GC-FID)	
プロピレン等の比較的低 沸点の物質	Δ	VOC多成分分析(GC-FID) 連続測定対象(優先定量外)だが精度が低い	濃縮工程 が課題
ホルムアルデヒド	0	有害大気汚染物質調査 連続測定対象外	
アルデヒド類(ホルムア ルデヒド除く)	×	有害大気汚染物質調査(アセトアルデヒド)	
極性物質(アルコール類、ケトン類等)	Δ	VOC多成分分析(GC-MS) 連続測定対象外	除湿工程 が課題


(方向性)

- 連続測定が困難な物質は、有害大気汚染物質調査やVOC多成分分析による補完等で、可能な限り実態を把握
- 濃縮や除湿工程の影響で分析精度が低い物質は、技術の進展度合いに伴い、より精度の高い測定機への見直しを検討

効率的かつ効果的な調査・解析体制の確立

◎ 「モニタリング」⇒「解析・研究」⇒「対策の検証」⇒「モニタリング 体制の見直し」のサイクル構築が重要

- ·VOCの連続測定は、発生源対策の効果検証が主な目的
- •その中で連続測定データを活用し、過去に3回、解析調査を実施
- ◎今後、環境基準等の達成が求められる光化学オキシダント等の 改善に向けて、短期的及び中長期的な視点にたってVOC連続測 定のモニタリング体制を検討
- (1)短期的視点
 - ・光化学オキシダント生成機構の把握
- (2)中長期的視点
 - ・VOCインベントリの検証、自動車技術革新等の社会状況変化
- (3)その他
 - ・VOC測定技術について 等