

- ▼粒子状物質やその前駆物質の大気中の挙動等に 関する知見が十分ではない
- ▼効果的な微小粒子状物質対策の検討が必要

二次生成機構を含む 微小粒子状物質及びその前駆物質の

- ●大気中の挙動等の科学的知見の集積
- ●微小粒子状物質の発生源寄与割合の推計

成分分析調査の目的②

- 微小粒子状物質の健康影響調査に資する知見の充実
- シミュレーションモデルの構築及び検証への 寄与にも期待

成分分析を継続的に実施することで

- 発生源の経年的な推移の把握
- 対策の効果の検証に関する知見を得る

PM2.5成分分析調査の経緯

年度	事項
2001(平成13)年度	●PM2.5 の 測定開始
2008(平成20)年度	●「微小粒子状物質検討会」を設置 ●成分分析調査を実施(17地点)
2009(平成21)年度	○ PM2.5の環境基準が制定(環境省)●成分分析調査(4地点継続)○「微小粒子状物質(PM2.5)の成分分析ガイドライン」(環境省)
2010(平成22)年度	〇事務処理基準改正
2011(平成23)年度	●PM2.5の法に基づく常時監視開始

成分分析調査実施地点数

	一般環境大気 測定局	自動車排ガス 測定局	合計
2008(H20) 年度	9	8	17
2009(H21) 年度以降	2	2	4

調査地点

•一般環境大気測定局 :足立区綾瀬

多摩市愛宕

(2013年度までは町田市中町)

•自動車排出ガス測定局:永代通り新川

(2015年度までは京葉道路亀戸)

甲州街道国立

調査期間

•年4回四季ごとに、2週間

調査を行う地域の気象的・社会的要因及び汚染状況を考慮 に入れた上で地方公共団体が独自に決定

-2017(平成29)年度調査は下記の期間

5月10日(水)~5月24日(水)

7月20日(木)~8月3日(木)

10月19日(木)~11月2日(木)

1月18日(木)~2月1日(木)

成分分析調査概要③

捕集方法

	捕集方法			フィルタ		
分析項目	測定場所	捕集装置	流量 (L/min)	材質	サイズ (mmф)	
PM _{2.5} 質量濃度 無機元素成分 イオン成分	多摩市愛宕 ・永代通り新川 足立区綾瀬 ・甲州街道国立	Model 2025i (Thermo SCIENTIFIC 社) LV-250R型 (SIBATA社)	16.7	PTFE (PALL, Tefl LotNo: T61393)	47	
炭素成分	多摩市愛宕 ・永代通り新川 足立区綾瀬 ・甲州街道国立	Model 2025i (Thermo SCIENTIFIC 社) LV-250R型 (SIBATA社)	16.7	石英繊維 (Pallflex, 2500QAT-UP, Lot No:20060)	47	

調査項目及び分析方法

	分析項目				
質量濃度	PM2.5質量濃度				
成分濃度	炭素成分				
	無機元素成分				
	イオン成分				

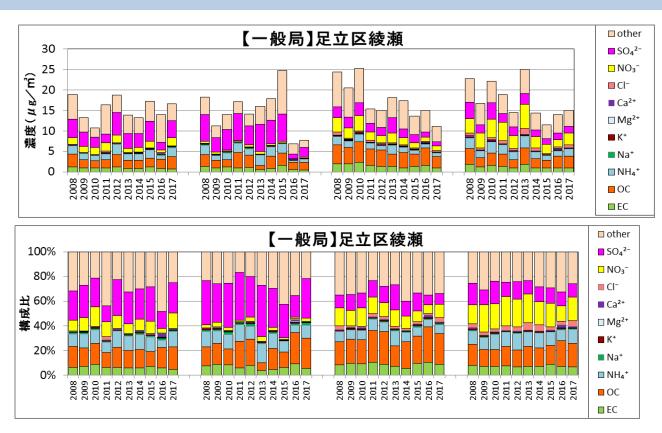
捕集方法及び分析方法

- ・大気中微小粒子状物質(PM25)測定方法 暫定マニュアル 改訂版(平成19年7月 環境省)
- ・微小粒子状物質の成分分析に係る基礎的な情報について
- (平成22年9月1日環境省水・大気環境局大気環境課事務連絡)
- ・微小粒子状物質(PM25)成分分析ガイドライン(平成23年7月環境省)
- ・微小粒子状物質(PM_{2.5})成分測定マニュアル(平成24年9月環境省、最終改正平成28年7月)
- ・環境大気常時監視マニュアル第6版(平成22年3月 環境省 水・大気環境局)

成分分析調查概要④

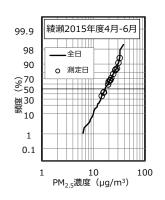
調査項目及び分析方法

	分析項目	分析方法/分析機器
質量濃度	PM _{2.5} 質量濃度	フィルタ捕集-質量法(秤量) ウルトラミクロ天秤 METTLERTOLEDO XP26

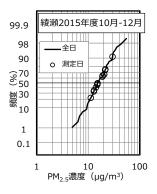

成分分析調查概要④

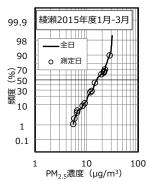
調査項目及び分析方法

	分析項目	分析方法/分析機器		
炭素成分	有機炭素(OC1、OC2、OC3、OC4) 元素状炭素(EC1、EC2、EC3) 炭化補正値(OCpyro)	サーマルオプ ティカルリフレクタンス法 (IMPROVEプロトコル) カーボンエアロゾル測定装置 Sunset Loboratory OCEC Carbon Analyzer Model 4L		
イオン成分	硫酸イオン($SO_4^{2\cdot}$)、硝酸イオン(NO_3^{\cdot})、塩化物イオン(Cl^{\cdot})、ナトリウムイオン(Na^{+})、カリウムイオン(K^{+})、カルシウムイオン(Ca^{2+})、マク゛ネシウムイオン(Mg^{2+})、アンモニウムイオン(NH_4^{+})	イオンクロマトグラフ法 イオンクロマトグラフ Metrohm 940 professional IC Vario		
無機元素成分	ナトリウム(Na)、アルミニウム(Al)、カリウム(K)、カルシウム(Ca)、スカンシ゛ウム(Sc)、チタン(Ti)、ハ゛ナシ゛ウム(V)、クロム(Cr)、マンカ゛ン(Mn)、鉄(Fe)、コハ゛ルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ヒ素(As)、セレン(Se)、ルヒ゛シ゛ウム(Rb)、モリフ゛デ゛ン(Mo)、アンチモン(Sb)、セシウム(Cs)、ハ゛リウム(Ba)、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、ハフニウム(Hf)、タンク゛ステン(W)、タンタル(Ta)、トリウム(Th)、鉛(Pb)、ケイ素(Si)	誘導結合プラズマ質量 分析(ICP-MS)法 ICP質量分析装置 PerkinElmer NexION 350S		


調査結果①


成分分析調査の2008(H20)年度から2017(H29)年度までの 濃度の地点別季節別平均値の推移と構成比(別図1)




調査結果②

成分分析調査期間の測定値の代表性 (2014(H26)年度から2017(H29)年度)(別図2)

2015年度 足立区綾瀬

 $(\mu g/m^3)$

	4-6月		7-9月		10-12月		1-3月	
	平均值	標準偏差	平均値	標準偏差	平均値	標準偏差	平均值	標準偏差
全日	19	8	15	8	17	8	17	7
測定日	23	6	27	10	18	5	15	7
検定	0	O	×	0	0	×	0	0

検定: 平均値の差の検定(t検定: 有意水準5%)、分散の比の検定(F検定: 有意水準5%)

【炭素・イオン成分】

□季節別・地点別平均濃度は、年度によって異なるが、その構成比は季節ごとに傾向がみられる。

「夏季は硫酸塩の構成比が大きい傾向にある。

| 逐季は硝酸塩の構成比が大きい傾向にある。

□地点別の比較では、4地点ともほぼ同様の濃度レベルであり、増減の傾向も極端な相違は見られない。

□2016(H28)年度から夏季の硫酸塩の濃度が大幅に減少した。

□全体的な濃度が低下している中、総有機炭素の低下は見られず、構成比が大きくなってきている。

【炭素フラクション】

- ・炭素フラクションの地点別、季節平均濃度に明確な 経年変化や顕著な傾向は見られない。
- -2016(平成28)、2017(平成29)年度も、全体的に EC2+EC3(soot-EC)の構成比が増加した。

- ・施策の効果の検証
- ・寄与率が高い硫酸塩、硝酸塩及び有機炭素の挙動把握
- •夏季の硫酸塩の濃度低下の検証
- ・炭素フラクションの変化の検証

- ▪調査日数
- •調査地点
- ・分析項目(有機マーカー)
- 硫酸塩と硝酸塩の詳細な解析