大気環境モニタリングに関する検討会 報告書(案)

~現状の検証と今後の方向性について~

2019 (令和元) 年 7 月 大気環境モニタリングに関する検討会

はじめに

東京都は、きれいな大気環境の確保に向けた対策を実施するため、1960年代前半より大気汚染状況の常時監視を開始し、住宅地等における一般環境大気測定局及び沿道等に自動車排出ガス測定局を設置することにより、大気汚染物質の測定を行ってきた。この間、測定局の適正配置や測定項目の見直しを数度にわたり実施するほか、都民・事業者にわかりやすく目に見える形で大気汚染の状況をホームページ等で伝えてきた。

こうした測定結果を踏まえ、硫黄酸化物(SOx)や窒素酸化物(NOx)の工場等における排出規制を段階的に強化するとともに、2003(平成 15)年 10 月からは近隣の県市と連携してディーゼル車規制を実施したことにより、東京都内の大気環境は大幅に改善された。

その一方で、微小粒子状物質 (PM_{2.5}) は、ここ数年、環境基準値の付近で推移している 測定局が多いため環境基準の達成率が年度ごとに変動し、また、光化学オキシダントは、 全ての測定局において環境基準は未達成であり、大気環境の残された課題となっている。

東京都は、それぞれ政策目標を掲げて対策を進めているが、特に、光化学オキシダントについては、光化学スモッグ注意報の発令日数の目標が未達成であるだけでなく、環境基準を達成した測定局が一局もない状態が長期間続いている。

本報告書は、50年に及ぶ大気汚染常時監視の歴史を踏まえ、将来にわたり適切な監視体制を維持していくために、現在の大気汚染状況とモニタリング体制や測定項目並びに物質について検証を行い、それぞれ検討を行った上で、今後のより望ましい東京都のモニタリング体制についての方向性をまとめたものである。

表 大気環境モニタリングに関する検討会における経過

開催回	開催日	検討内容		
平成 30 年度	2018 (平成 30) 年	モニタリング体制の確認、検証手法の検討		
第1回	8月7日	で一クサンク体制の推認、便証子伝の傾割		
平成 30 年度	2018(平成 30)年	モニタリング体制の検証		
第2回	12月18日	てークリング (平前の)快証		
平成 30 年度	2019(平成 31)年	モニタリング体制等の方向性の検討		
第3回	2月12日	で一クップク学問寺の方円性の検討		
令和元年度	2019(令和元)年	却生 (安) 於計		
第1回	7月2日	報告書(案)検討		

■この報告書での表記について

測定項目等の「窒素酸化物」等の物質名については、「NOx」等の化学式で表記する。

大気環境モニタリングに関する検討会委員名簿

2018 (平成 30) 年度

氏名	役職名		
大前 和幸	慶應義塾大学医学部 名誉教授		
熊谷 貴美代	群馬県衛生環境研究所 独立研究員		
◎坂本 和彦	一般財団法人日本環境衛生センター アジア大気汚染研究センター 所長		
○菅田 誠治	国立研究開発法人国立環境研究所 地域環境研究センター 大気環境モデリング研究室長		
三上 岳彦	首都大学東京 名誉教授		
(臨時委員) 畠山 史郎	埼玉県環境科学国際センター 総長		

◎ 座長 ○ 副座長

(敬称略、五十音順)

2019 (令和元) 年度

氏名	役職名
岩澤 聡子	防衛医科大学校 医学教育部医学科 衛生学公衆衛生学講座 講師
熊谷 貴美代	群馬県衛生環境研究所 大気環境係長
菅田 誠治	国立研究開発法人国立環境研究所 地域環境研究センター 大気環境モデリング研究室長
高橋 日出男	首都大学東京大学院 教授
畠山 史郎	一般財団法人日本環境衛生センター アジア大気汚染研究センター 所長
(臨時委員) 坂本 和彦	埼玉大学 名誉教授

◎ 座長 ○ 副座長

(敬称略、五十音順)

大気環境モニタリングに関する検討会設置要綱は参考資料 1 参照

目次

1	大気環境モ	Eニタリング	1
	1.1 法に基	らずく常時監視	1
	1.1.1 大	気汚染常時監視	2
	(1)	目的	2
	(2)	調査の概要	2
	1.1.2 PM	$M_{2.5}$ 成分分析調査	4
	(1)	目的	4
	(2)	調査の概要	4
	1.1.3 有	害大気汚染物質調査	5
	(1)	目的	5
	(2)	調査の概要	5
	1.1.4	般環境大気中のダイオキシン類調査	6
	(1)	目的	6
	(2)	調査の概要	6
	1.2 都独自]のモニタリング	7
	1.2.1 ス	ーパーサイト	7
	(1)	目的	7
	(2)	調査の概要	7
	1.2.2 VC	OC 多成分調査	9
	(1)	目的	9
	(2)	調査の概要	9
	1.2.3 VC	OC 連続測定調査	10
	(1)	目的	10
	(2)	調査の概要	10
2	現在のモ <i>=</i>	ニタリングにおける測定結果の検証1	2
	2.1 大気環	環境改善に向けたこれまでの取組	12
	2.2 測定結	5果の推移	14
	2.2.1 環	境基準の達成率の推移	14
	2.2.2 各	項目の状況	16
	(1)	NO ₂	16
	(2)	SPM	16
	(3)	PM _{2.5}	17
	(4)	Ox	18
	(5)	SO ₂	18
	(6)	CO	19
	(7)	NMHC	19
	(8)	有害大気汚染物質	21
	(9)	ダイオキシン類(一般環境大気中)	23

2.2.3	3 常	7時監視測定結果の検証	24
((1)	PM _{2.5}	24
((2)	Ox	25
((3)	その他	28
2.3	則定体	本制についての検証	29
2.3.1	l 測	定局の配置状況	29
((1)	都における測定局配置の考え方	29
((2)	常時監視体制の整備状況	29
((3)	事務処理基準との比較及び検証の必要性	30
2.3.2	2 SF	PM についての検証	33
((1)	検証の手順	33
((2)	過去データとの比較	33
((3)	測定局間濃度の日変動の類似性の調査	39
2.3.3	3 モ	ニタリングデータを活用した解析事例	41
((1)	スーパーサイトを利用した調査解析	41
((2)	VOC 連続測定結果を利用した調査解析	
2.3.4	4 測	定技術の検証	52
((1)	VOC 連続測定技術	
((2)	測定機の精度向上	52
2.3.5	5 検	証及び調査解析から導かれた課題	
((1)	常時監視	54
((2)	PM _{2.5} 成分分析	54
((3)	スーパーサイト	54
	(4)	VOC 連続測定	
		のまとめ	
3.1	モニタ	タリング体制の在り方	
((1)	大気環境モニタリングの役割	
((2)	社会状況の変化への的確な対応	
((3)	より効果的な解析手法の導入	
	(4)	国の動向と東京の特殊性	
3.2		Dモニタリング体制の方向性	
3.2.1	l 発	と生源解析の充実と二次生成の解明	
	(1)	PM _{2.5} 有機マーカー測定の可能性	
((2)	VOC 連続測定調査の充実	
3.2.2	2 測	定技術の選定・導入	
((1)	VOC 連続測定技術	
	(2)	SO ₂ 及び CO における測定機の精度向上	
4 参考	資料.		63

図表一覧

図 1	都内の測定局の配置図	3
図 2	都内の PM _{2.5} 成分分析調査地点	4
図 3	都内の有害大気汚染物質調査地点	5
図 4	都内の一般環境大気中ダイオキシン類調査地点	6
図 5	スーパーサイトの配置	8
図 6	VOC 多成分調査地点	9
図 7	VOC 連続測定調査地点	11
図 8	大気環境中濃度の推移とこれまでの主な施策	13
図 9	一般局における環境基準達成率の経年変化	14
図 10	自排局における環境基準達成率の経年変化	15
図 11	NO ₂ 年平均値の経年変化	16
図 12	SPM 年平均値の経年変化	16
図 13	PM _{2.5} 年平均値の経年変化	17
図 14	PM _{2.5} 年平均値の推移(フィルタ振動法含む)	17
図 15	注意報発令基準以上の日数・時間数の推移(5 年移動平均)	18
図 16	SO ₂ 年平均値の経年変化	18
図 17	CO 年平均値の経年変化	19
図 18	NMHC 年平均値の経年変化	19
図 19	NMHC の 3 時間平均値が 0.31 ppmC を超えた日数 (局平均)	20
図 20	ベンゼン濃度経年変化	21
図 21	トリクロロエチレン濃度経年変化	21
図 22	テトラクロロエチレン濃度経年変化	22
図 23	ジクロロメタン濃度経年変化	22
図 24	ダイオキシン類濃度経年変化(一般環境大気中)	23
図 25	Ox 濃度の年間 4 番目に高い日最高 8 時間値の 3 年平均値の推移	25
図 26	Ox 測定値(1 時間値)の頻度分布(1996(平成 8)年度と 2016(平成 28)年度比較)	26
図 27	NOx 年平均値の推移	26
図 28	NO ₂ /NOx の推移	27
図 29	NMHC/NOx の推移	28
図 30	特殊沿道局における NO ₂ 濃度(98%値)の経年変化	31
図 31	一般局における SPM 濃度 2%除外値頻度分布	33
図 32	自排局における SPM 濃度 2%除外値頻度分布	34
図 33	特殊沿道局における SPM 濃度 2%除外値経年変化	35
図 34	湾岸局における SPM 濃度 2%除外値経年変化	36
図 35	SPM 濃度(2%除外値)の頻度分布の比較(1997(平成9)年度と2017(平成29)年度)	.37
図 36	SPM 濃度(年平均値)の頻度分布の比較(1997(平成9)年度と2017(平成29)年度)	37
図 37	SPM 日平均値による樹形図(2015(平成 27)年から 2017(平成 29)年の 3	3 力
年	Ξ)	39

図 38	スーパーサイトにおける PM _{2.5} 日平均値の相関	41
図 39	スーパーサイトにおける PM _{2.5} の日内変動	42
図 40	スーパーサイトにおける OBC の日内変動	42
図 41	スーパーサイトにおける SO ₄ ²⁻ イオンの日内変動	42
図 42	Ox 高濃度気象条件時における Ox 濃度別の VOC 物質群(大田区東糀谷)	44
図 43	Ox 高濃度気象条件時における Ox 濃度別の VOC 物質群(江東区大島)	45
図 44	調査時のVOC 連続測定機設置場所	46
図 45	VOC 及び NOx 濃度を増減させた時のオゾン生成シミュレーション結果.	49
図 46	各季節の地点別オゾン生成能	50
図 47	各季節の物質別オゾン生成能	51
図 48	化学物質適正管理制度に基づく適正管理化学物質の年間排出量	55
表 1	法令等に基づく常時監視調査概要	1
表 2	都内の区分別測定局数	2
表 3	定量化対象物質	10
表 4	東京都環境基本計画での大気環境改善目標(2002(平成 14)年度以降)	12
表 5	事務処理基準に基づく測定局数と現行の測定局数(測定項目別)	30
表 6	自排局整備方針に基づく日交通量の定義	38
表 7	自排局整備方針に基づく群の定義	38
表 8	Ox 高濃度時に濃度が増加していた VOC 成分(町田市能ヶ谷局)	47
表 9	Ox 増加時に減少する VOC 成分	49
表 10	Ox 増加とともに増加する VOC 成分	
表 11	VOC 各物質の連続測定の可否	52
表 12	メーカー別高感度 SO_2 計の開発状況	53
表 13	メーカー別高感度 CO 計の開発状況	53
表 14	解析調査を踏まえた測定対象候補物質	60

1 大気環境モニタリング

東京都(以下「都」という。)では、戦後の都市への人口集中と、急速な産業の発展、自動車交通量の急増などにより、1960年代前半には深刻な公害が発生し、都民の健康被害が顕在化していた。

そのため都は、大気汚染防止法(昭和 43 年法律第 97 号。以下「大防法」という。)によって大気汚染物質の常時監視が自治体に義務付けられるよりも前の、昭和 30 年代後半には測定局を設置して、都内の大気環境を測定してきた。

その後、元号が平成の時代になり、清掃工場等の廃棄物焼却炉から排出されるダイオキシン類が人の生命及び健康に重大な影響を与えるおそれがあるとされたため、1999(平成 11)年にダイオキシン類対策特別措置法(平成 11 年法律第 105 号。以下「ダイ特法」という。)に基づき、都内全域において、ダイオキシン類の測定を行ってきた。

また、法に基づく測定に加え、都独自のモニタリングも実施している。

1.1 法に基づく常時監視

都では、大防法等に基づき、次のとおり大気環境を調査している。

大防法では、交差点等の交通渋滞による自動車排出ガス濃度の測定、大気の状況の常時監視を知事(又は政令市長)に義務付けている。

都は、これらの規定に基づき、中核市である八王子市とも協議して、大気汚染状況について常時監視を行っている。

表 1 法令等に基づく常時監視調査概要

名称	測定根拠	概要
大気汚染常時監視	大防法第 22 条、20 条	・環境基準(参考資料2参照)の評価等のため、82測定局で、24時間365日実施・対象は、窒素酸化物、浮遊粒子状物質、微小粒子状物質、光化学オキシダント、二酸化硫黄、一酸化炭素、炭化水素及び気象
微小粒子状物質 (PM _{2.5})成分分析 調査	「大気汚染防止法 第22条の規定に基 づく大気の汚染の 状況の常時監視に 関する事務の処理 基準」	・発生源の推定、インベントリの検証等、二次生成機構の解明のため、4 測定局で、年 4 回四季毎に 2 週間 336 時間連続採集して実施 ・対象は、炭素成分、水溶性イオン成分、無機元素成分
有害大気汚染物質 調査	大防法第 18 条、22 条	 ・環境基準(参考資料2参照)の評価等のため、15地点(揮発性有機化合物(VOC)は17地点)で月1回、24時間連続採取して実施 ・対象は、ベンゼン等27物質
一般環境大気中の ダイオキシン類調 査	ダイ特法第 26 条	・環境基準(参考資料2参照)の評価等のため、17地点で、年4回、1週間(168時間)連続採取して実施・対象は、PCDDs等3物質

1.1.1 大気汚染常時監視

(1) 目的

大気の汚染の状況の常時監視(以下「常時監視」という。)は、大気汚染自動測定機により継続的に大気汚染に係る測定を実施することにより、地域における大気汚染に関する緊急時の措置や、大気環境や発生源の状況及び高濃度地域の把握、汚染防止対策の効果の把握等を行い、もって大気汚染防止対策の基礎資料とすることを目的としている。

常時監視により得られた成果は、従前は、緊急時対策や環境基準の適否判断の資料とすることに重点が置かれていたが、時代と共に環境影響評価、広域的な汚染のメカニズムの解明、環境基本計画等の策定のための基礎資料とするなど活用範囲が広がっている。

(2) 調査の概要

ア 調査地点(地点図は図1のとおり)

常時監視の対象となる物質等を測定するための大気汚染自動測定機が設置されている施設を測定局という。

測定局には、一般環境大気測定局(以下「一般局」という。)と自動車排出ガス測定局(以下「自排局」という。)、その他都が独自に設置している測定局(所)がある。

・自排局 35 局

・その他の測定地点 2 局 (立体測定局、大気汚染測定所)

イ 調査期間

365 日 24 時間

ウ測定項目

NOx (NO_2, NO) 、SPM、 $PM_{2.5}$, Ox、 SO_2 、CO、NMHC、 CH_4 、気象

(各測定局での測定項目は参考資料3参照)

表 2 都内の区分別測定局数

		* * * *
測定局区外	局数	
	区部	28
一般局	多摩部	19
	計	47
	区部	26
自排局	多摩部	9
	計	35
立体測定局	区部	1
大気汚染測定所	多摩部	1

2018 (平成 30) 年度現在

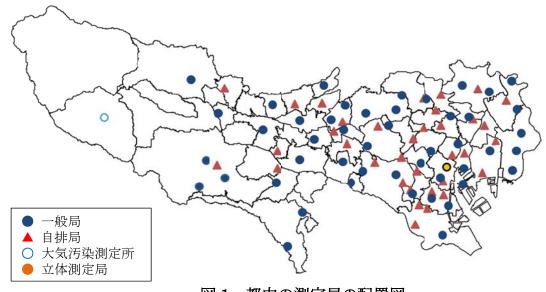


図1 都内の測定局の配置図

(一般局、自排局別の測定局配置図は参考資料4参照)

【測定局の区分】

測定局の区分

ア 一般局

一般局は、住宅地等一般的な地域における大気汚染状況の継続的な把握、発生源からの排出による汚染への寄与及び高濃度地域の特定、汚染防止対策の効果の把握といった、常時監視の目的が効率的に達せられるように配置している。

イ 自排局

自動車走行による排出物質に起因する大気汚染の考えられる交差点、道路及び道路端付近において大気汚染状況を常時監視することを目的としている測定局を自排局という。自排局は、自動車排出ガスによる大気汚染状況が効率的に監視できるよう、道路、交通量等の状況を勘案して配置するとされている。

ウ その他の測定局(所)

都が法定外で独自に設置している測定局として、都内の鉛直方向の大気汚染状況を 把握するため東京タワーに設置した立体測定局(1968(昭和43)年)と、一般局・自 排局と比較対照するため、人為的汚染源の少ない檜原村に設置した大気汚染測定所 (1981(昭和56)年)がある。

なお、立体測定局については、都外からの移流の影響等をより効果的に把握するため、東京タワーから東京スカイツリーに移設した(2019(平成31)年4月)。

1.1.2 PM_{2.5}成分分析調査

(1) 目的

 $PM_{2.5}$ は、発生源から直接排出されるほか、NOx、SOx、VOC 等が大気中で化学反応により粒子化したものも含む混合物である。

 $PM_{2.5}$ の成分を明らかにすることにより、効果的な対策の実施に必要となる $PM_{2.5}$ や前駆物質の大気中での挙動等に関する知見の集積や、発生源別寄与の推計等の基礎資料とする。

(2) 調査の概要

ア 調査地点(地点図は図2のとおり)

•一般局:足立区綾瀬

多摩市愛宕(2013(平成25)年度までは町田市中町)

・自排局:永代通り新川(中央区)(2015(平成 27)年度までは京葉道路亀戸(江東区))

甲州街道国立(国立市)

イ 調査期間

年4回四季(5月、7月、10月、1月)ごとに、14日間

ウ測定項目

炭素成分、水溶性イオン成分、無機元素成分

(捕集方法は参考資料 5、測定項目及び分析方法の詳細は参考資料 6 参照)

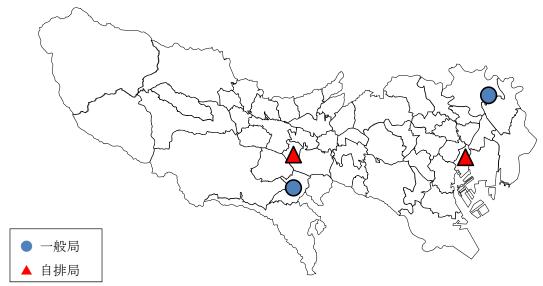


図2 都内のPM_{2.5}成分分析調査地点

1.1.3 有害大気汚染物質調査

(1) 目的

都内大気中の有害大気汚染物質に係る環境基準の適合状況等を把握し、健康影響の評価及び発生源対策の策定や対策効果を評価し、大気汚染防止対策の推進に資することを目的としている(根拠:大防法第18条の39第1項及び第22条第1項)。

(2) 調査の概要

- ア 調査地点(地点図は図3のとおり)
 - ・都内 15 地点 (八王子市測定分 2 地点を含む)
 - ※1 VOC (酸化エチレン除く) は、沿道 2 地点 (甲州街道大原 (世田谷区)、中山道大和町 (板橋区)) でも実施
 - %2 調査地点は、「東京都の有害大気汚染物質のモニタリングのあり方について(1999(平成 11) 年 3 月)」に基づいて選定

イ 調査期間

·月1回、24時間連続採取

ウ 調査項目

・27 物質(採取及び分析方法の詳細は参考資料7参照)

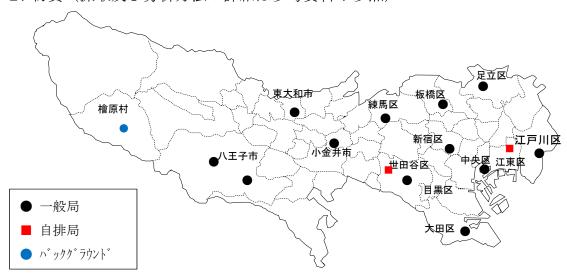


図3 都内の有害大気汚染物質調査地点

(調査地点の詳細は参考資料9参照)

1.1.4 一般環境大気中のダイオキシン類調査

(1) 目的

都内大気中のダイオキシン類に係る環境基準の適合状況を把握し、健康影響の評価及び発生源対策の策定や対策効果を評価し、大気汚染防止対策の推進に資することを目的としている(根拠:ダイ特法第26条)。

(2) 調査の概要

ア 調査地点(地点図は図4のとおり)

- ・都内17地点(八王子市測定分2地点含む)
 - ※ 調査地点は、「ダイオキシン類対策特別措置法第 26 条の規定に基づく大気のダイオキシン類による汚染の状況の常時監視に関する事務の処理基準」に基づいて選定

イ 調査期間

・年4回四季ごと、7日間連続採取

ウ 調査項目

• 3 物質

(採取及び分析方法の詳細は参考資料8参照)

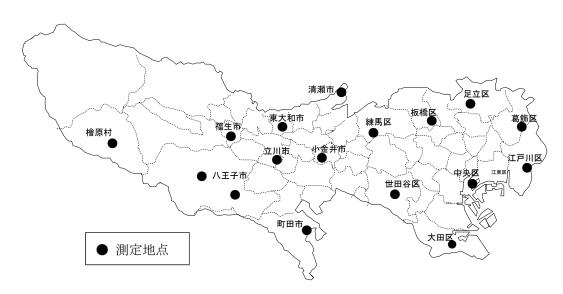


図4 都内の一般環境大気中ダイオキシン類調査地点

(調査地点の詳細は参考資料9参照)

1.2 都独自のモニタリング

1.2.1 スーパーサイト

(1) 目的

PM_{2.5} の成分構成、前駆物質の挙動及び光化学オキシダント (Ox) 等大気汚染物質の生成のメカニズムを把握するため、従来から測定を実施していた東京都環境科学研究所 (以下「都環研」という。) での測定を区部の代表とし、この測定機と同等以上の測定機を設置した狛江局を多摩部の代表として、詳細な解析を行うためのスーパーサイト1と名付け、2016 (平成 28) 年度より測定を開始した。

この 2 地点の詳細な測定項目から、区部・多摩部の生成量の差、その継時的な挙動について比較検証することにより $PM_{2.5}$ の濃度上昇の要因を明らかにしていく。

(2) 調査の概要

ア 調査地点(地点図は図5のとおり)

- ・都環研 (江東区) (都環研の常時監視測定項目は江東区大島局のデータを利用)
- 狛江市中和泉局(狛江市)

イ 調査期間

・365 日 24 時間(採取後、解析対象期間の試料を測定。)

ウ測定項目

- ・PM₂₅(質量濃度、炭素成分、水溶性有機炭素、水溶性イオン成分)
- ・PM_{2.5-10} (質量濃度、水溶性イオン成分、pH)
- ・硝酸ガス
- ・総反応性窒素酸化物²(NOy)

(スーパーサイトの仕様は参考資料 10 参照)

¹ 東京都環境基本計画 (2016 (平成 28) 年) において、通常の一般局よりも高感度かつ成分の測定等も詳細に分析・測定のできる測定所のこと。区部に 1 か所及び多摩部に 1 か所設置。

² 総反応性窒素酸化物: NOx と NOx の酸化生成物を合わせた物質群の総称

図 5 スーパーサイトの配置

1.2.2 VOC 多成分調査

(1) 目的

大気中の VOC には、有害大気汚染物質調査の対象物質以外にも、有害性が認められる物質や Ox の原因物質が含まれることから、可能な限り多数の成分についてその濃度や挙動を明らかにすることで、Ox 生成機構の解明に向けた解析や VOC 削減対策の策定に向けた基礎資料とすることなどを目的としている。

(2) 調査の概要

ア 調査地点(地点図は図6のとおり)

·都内 15 地点

※有害大気汚染物質調査と同じ13地点、甲州街道大原(世田谷区)及び中山道大和町(板橋区)

イ 調査期間

・月1回、24時間連続採取(有害大気汚染物質調査実施日と同日)

ウ 調査項目

・108 物質

(分析項目の詳細は参考資料 11 参照)

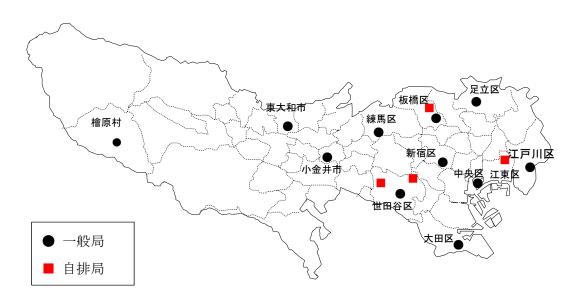


図 6 VOC 多成分調査地点

1.2.3 VOC 連続測定調査

(1) 目的

有害大気汚染物質調査等の常時監視だけでは把握できない1時間ごとのVOCの挙動を 把握することで、より詳細で効果的なVOC削減対策の検討や効果の検証に活用すること を目的としている。

(2) 調査の概要

ア 調査地点(地点図は図7のとおり)

• 区部 4 地点

※一般局(大田区東糀谷、江東区大島、板橋区氷川町)及び自排局(環八通り八幡山(世田谷区))

イ 調査期間

・365 日、1 時間ごとに 10 分間試料採取

ウ 調査項目

・16 物質(分析は、測定局に設置した GC-MS3)

測定対象は96物質(参考資料12参照)だが、有害大気汚染物質調査の測定対象である表3に示す物質について、優先的に定量している。

表 3 定量化対象物質

No.	項目名称	No.	項目名称
1	塩化ビニルモノマー	9	四塩化炭素
2	1,3-ブタジエン	10	トリクロロエチレン (TCE)
3	アクリロニトリル	11	トルエン
4	ジクロロメタン (DCM)	12	テトラクロロエチレン (PCE)
5	1,1-ジクロロエタン	13	エチルベンゼン
6	クロロホルム	14	<i>m,p</i> キシレン
7	1,2-ジクロロエタン	15	oキシレン
8	ベンゼン (Bz)	16	スチレン

_

³ GC-MS(Gas Chromatograph Mass Spectometer)ガスクロマトグラフ質量分析装置

図 7 VOC 連続測定調査地点

大気環境モニタリングをまとめた表は参考資料 13 のとおり

2 現在のモニタリングにおける測定結果の検証

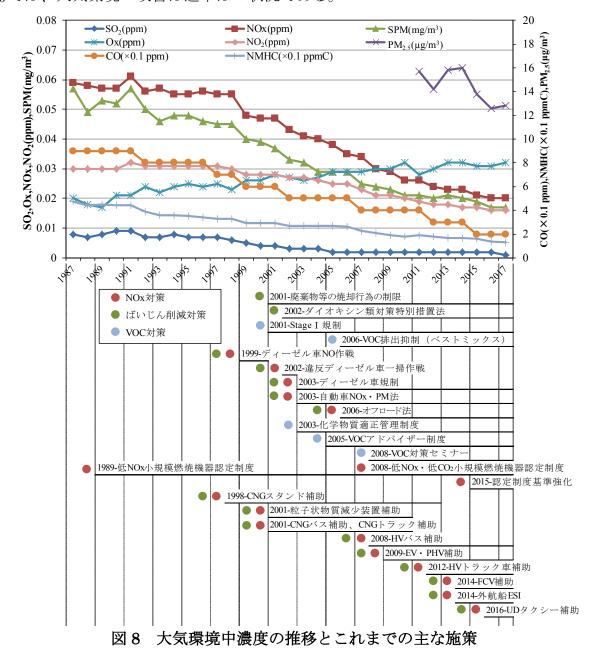
大気環境改善に限らず、行政の施策は、現状の把握から始まり、対策の影響や効果の予測、 対策実施後の効果の検証が欠かせないものである。大気環境のモニタリングは、現状の大気 環境の把握だけでなく、これまでの大気環境改善の取組の結果を、科学的な根拠である測定 値で明確に示してきた。

これまでの改善への取組を測定結果の推移を踏まえ振り返りながら、今後の課題と測定体制の検証を実施した。

2.1 大気環境改善に向けたこれまでの取組

都は、昭和 40 年代から公害対策の計画を策定し、定期的な見直しと共に、その実効性を 高めてきた。近年の施策目標を表 4 に示す。

表 4 東京都環境基本計画での大気環境改善目標(2002(平成14)年度以降)


女 4 果 果 和 果 来	見基本計画での大気埬現攻善日	宗(2002(平成 14)年	- 及以降)
策定時期	目標	目標年における状況	備考
2002	●2010(平成 22)年度までに	• 一般局 100%達成	
(平成 14) 年	SPM の環境基準全局達成	・自排局 100%達成	
1月	●2005(平成 17)年度までに	•一般局 98%達成	
	NO ₂ の環境基準全局達成	・自排局 56%達成	
	●2005(平成 17)年度までに	・全測定地点で達成	
	ベンゼンの環境基準全局達成	- 主例足地点(建成	
2008	●2010(平成 22)年度までに	·一般局 100%達成	
(平成 20) 年	SPM の環境基準全局達成	・自排局 100%達成	
3月	●2010(平成 22)年度までに	·一般局 100%達成	
	NO2の環境基準全局達成	・自排局 91%達成	
	●2016(平成 28)年度までに	・注意報発令5日	
	光化学スモッグ注意報発令日数 0	● 住息報先行 3 日	
2016	●2020 年度までに		「都民ファースト
(平成 28) 年	光化学スモッグ注意報発令日数0		でつくる『新しい東 京』~2020 年に向
3月	●2024 年度までに		けた実行プラン~」
	PM _{2.5} の環境基準全局達成	・2018(平成 30)年	, , , , , , ,
	●2030 年度までに	度時点では、いずれの	年) 12 月策定) に
	光化学オキシダント濃度を全局	目標も未達成	おいても同一の目標を掲げた。
	で 0.07 ppm 以下		V,, C 13.7 1C0
	(年間4番目に高い日最高8時		
	間値の3年平均値)		

これまで都は、周辺自治体と連携し、ディーゼル車規制や工場・事業場等の固定発生源の対策に取り組んできた。

近年の、大気改善対策の主な施策と大気環境中の測定項目の濃度推移4を図8に示す。

NOx や SPM の大気中濃度は、1990 年代においては環境基準を上回る濃度で推移していたが、法改正や都の要綱による固定発生源への規制強化や、1999 (平成 11) 年から取り組んできたディーゼル車対策をはじめとした自動車排出ガス対策によって、大幅に改善された。多くの測定項目で改善が見られる一方、濃度の上昇傾向が続く Ox や、濃度変動が大きい

PM₂₅では、大気環境の改善は道半ばの状況である。

注 大気汚染物質濃度は、都内一般局の年平均値

_

⁴ 大気中微小粒子状物質検討会報告書(大気中微小粒子状物質検討会:2019(令和元)年●月)

2.2 測定結果の推移

大防法等に基づく常時監視の測定調査結果について、これまでの推移を示す。

2.2.1 環境基準の達成率の推移

法に基づく常時監視測定結果は、年度ごとに環境基準の達成率で評価する。環境基準は、「行政上の目標(維持されることが望ましい基準)」であるため、項目が追加されることもあり、基準値自体が変更されることもある。

現在、 NO_2 をはじめとする 10 項目について全国一律の環境基準が規定されており、そのほか、Ox についての指標、NMHC 濃度についての指針が示されている。現在の環境基準の達成状況を図 9、図 10 に示す。

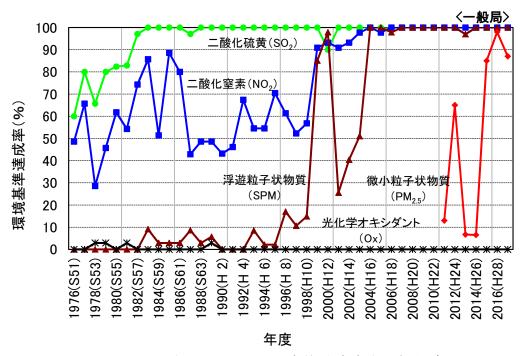


図9 一般局における環境基準達成率の経年変化

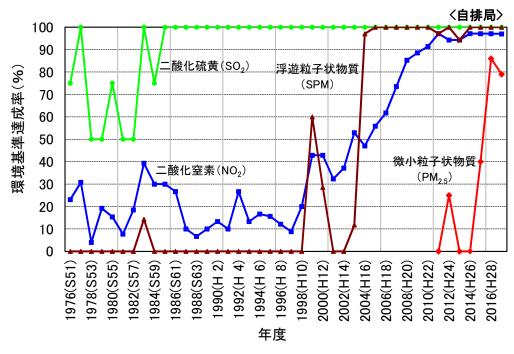


図 10 自排局における環境基準達成率の経年変化

SO₂ は、2000 (平成 12) 年度の三宅島噴火の影響による一般局での一時的な達成率の低下を除き、1988 (昭和 63) 年度以降、全ての測定局で環境基準を達成している。

 NO_2 は、一般局においては 11 年連続で全ての測定局において環境基準を達成しており、自排局においても、2004(平成 16)年度に 47%であった達成率が、2010(平成 22)年度以降は 90%以上で推移している。環境基準が未達成の測定局は、2017(平成 29)年度は、前年度に引き続き環七通り松原橋局(自排局)一局のみとなっている。

SPM は、一般局、自排局ともに 4 年連続で全ての測定局において環境基準を達成したところである。2004(平成 16)年度以降は気象的な要因を除いて、おおむね環境基準を達成している。

 $PM_{2.5}$ は、環境基準値の付近で推移している測定局が多いこともあり、環境基準達成率は年度ごとに変動している。

Oxは、環境基準が全ての測定局において未達成の状況が継続している。

有害大気汚染物質調査で測定している物質のうち、環境基準が設定されている物質は、ベンゼン、トリクロロエチレン、テトラクロロエチレン及びジクロロメタンである。

ベンゼンは 2004 (平成 16) 年度以降、他 3 物質は 1997 (平成 9) 年度以降、全ての測定 地点で環境基準を達成している。

このほか、ダイオキシン類は、環境基準が定められた 2000 (平成 12) 年以降、全ての測定地点で環境基準を達成している。

2.2.2 各項目の状況

次に、項目ごとの状況について示す。

(1) NO₂

図 11 に一般局・自排局ごとの年平均値の経年変化を示す。いずれも年平均値は低下傾向にあり、その濃度差も縮まってきている。

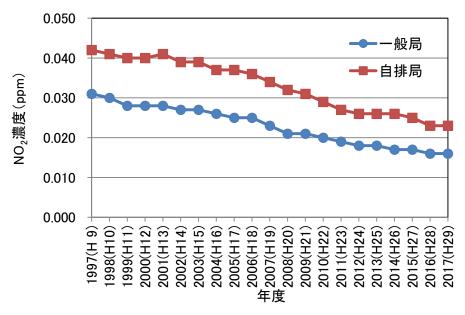


図 11 NO₂年平均値の経年変化

(2) SPM

図 12 に一般局・自排局ごとの年平均値の経年変化を示す。いずれも年平均値は低下傾向にあり、一般局と自排局との濃度差がほぼない状態が継続している。

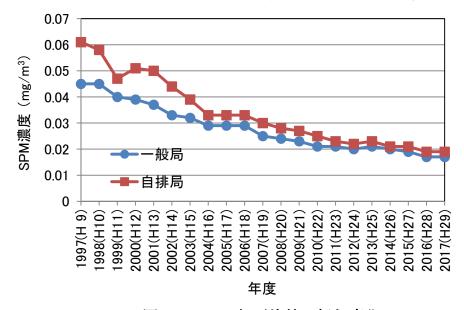


図 12 SPM 年平均値の経年変化

(3) PM_{2.5}

図 13 に一般局・自排局ごとの年平均値の経年変化を示す。近年、一般局・自排局とも長期基準の 15 μg/m³付近で推移している。一般局における環境基準達成率は、年によって変動しており、安定的に環境基準を達成するには、さらに年平均値を低下させる必要がある。

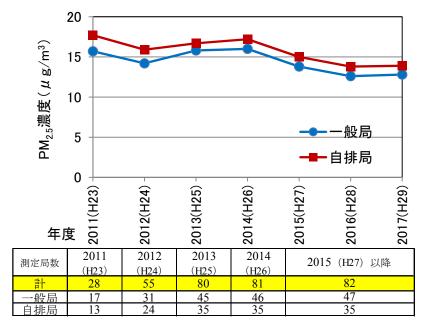
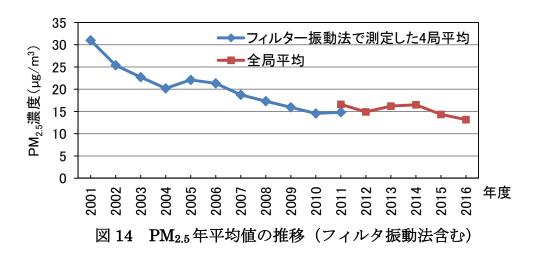
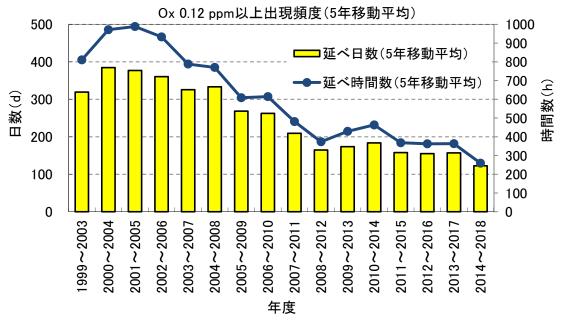



図 13 PM_{2.5}年平均値の経年変化

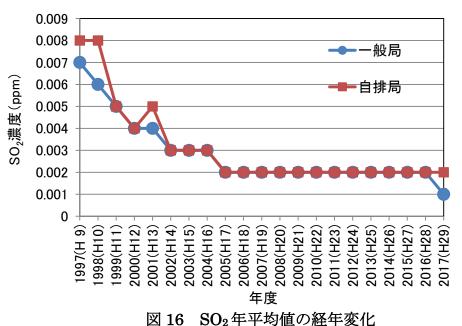
なお、都は、 $PM_{2.5}$ について、環境基準が設定された 2009 (平成 21) 年度以前から大気中の濃度について、フィルタ振動法5により測定している。その結果をまとめると、大気中濃度の年平均値は 2001 (平成 13) 年度から 2016 (平成 28) 年度までに約 55%減少している(図 14 参照)。


※フィルタ振動法で測定した4局:足立区綾瀬、町田市中町、日光街道梅島、甲州街道国立

 $^{^5}$ 2001(平成 13)年度から 2011(平成 23)年度まで、標準測定法が定められる前に、都内 4 局でフィルタ 振動法により測定していた。当時のフィルタ振動法は、測定器の性質上、 $PM_{2.5}$ 検出部を 50° に加温する必要があった。加温することで $PM_{2.5}$ 中に含まれる半揮発性物質が揮散することから、フィルタ振動法による測定値は、標準測定法による測定値と比べて低い濃度を示す傾向がある。

(4) Ox

Ox については、全ての測定局で 1 時間値が 0.06 ppm を超えており、環境基準を満た していない。


図 15 に注意報発令基準である 0.12 ppm 以上の延べ日数、延べ時間数の 5 年移動平均 を示す。2000 (平成12) 年頃以降、延べ日数、延べ時間数ともに減少傾向にある。

注意報発令基準以上の日数・時間数の推移(5年移動平均)

(5) SO₂

図 16 に一般局・自排局ごとの年平均値の経年変化を示す。両局とも年平均値は低下し ており、一般局と自排局における濃度差がほぼない状態が継続している。

(6) CO

図 17 に一般局・自排局ごとの年平均値の経年変化を示す。両局とも年平均値は低下してきており、一般局と自排局における濃度差は縮小する傾向にある。

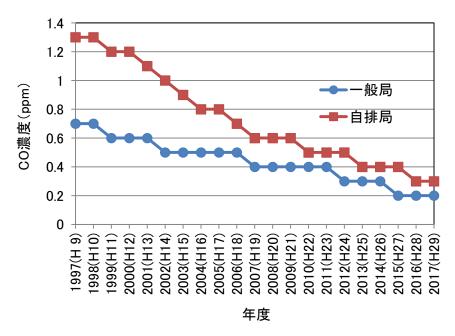


図 17 CO 年平均値の経年変化

(7) NMHC

NMHCは、環境基準は設定されていないが、大気中炭化水素濃度の指針があり、また、OxとPM_{2.5}の原因物質の一つである重要な物質であるため常時監視を行っている。

図 18 に一般局・自排局ごとの年平均値の経年変化を示す。両局とも年平均値は低下してきており、その濃度差は一時期に比べると縮小している。

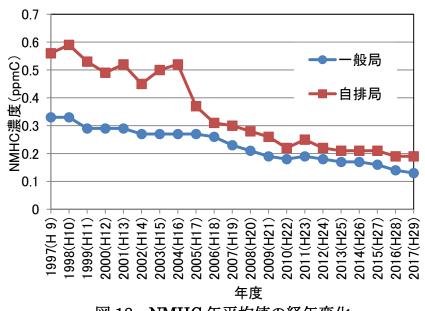


図 18 NMHC 年平均値の経年変化

大気中炭化水素濃度の指針に照らし、午前6時から9時までのNMHCの3時間平均値が0.31 ppmCを超えた日数について、一般局・自排局ごとに測定を実施している1局当たりの平均を求め経年変化を図19に示した。

両局とも平均値は低下しているが、近年は減少傾向の鈍化がみられる。

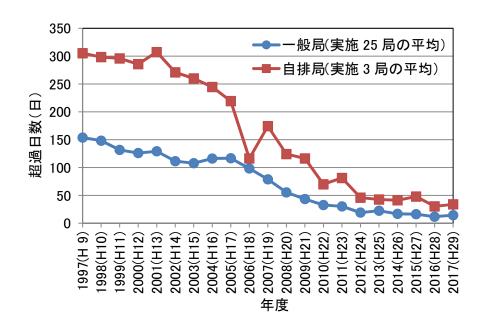


図 19 NMHC の 3 時間平均値が 0.31 ppmC を超えた日数 (局平均)

(8) 有害大気汚染物質

有害大気汚染物質調査で測定している物質のうち、環境基準が設定されているベンゼン、トリクロロエチレン (TCE)、テトラクロロエチレン (PCE)、ジクロロメタン (DCM) の4物質の年平均値の経年変化を図20~図23に示す。

いずれの物質の濃度も低下傾向にあり、環境基準を達成している。

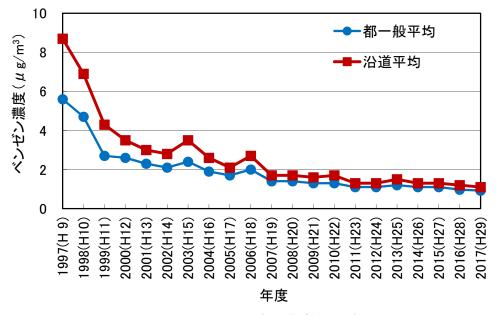


図 20 ベンゼン濃度経年変化

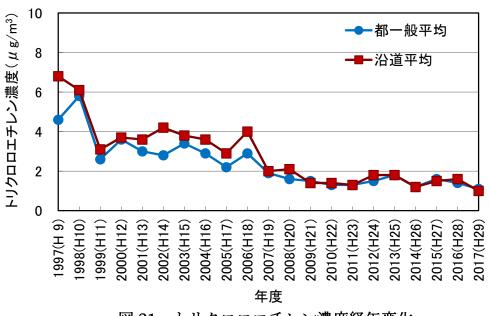


図 21 トリクロロエチレン濃度経年変化

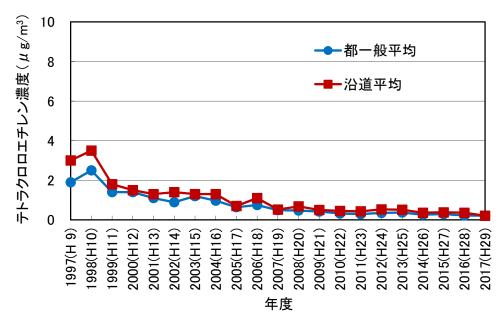


図 22 テトラクロロエチレン濃度経年変化

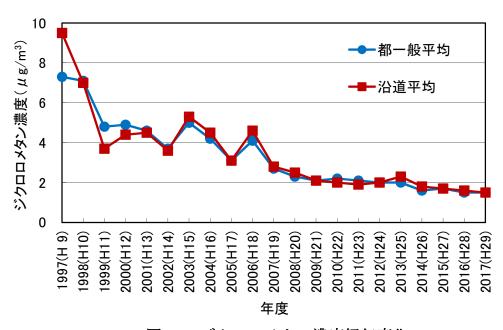


図 23 ジクロロメタン濃度経年変化

(9) ダイオキシン類(一般環境大気中)

一般環境大気中におけるダイオキシン類濃度の経年変化を、図 24 に示す。濃度は低下傾向にあり、環境基準を達成している。

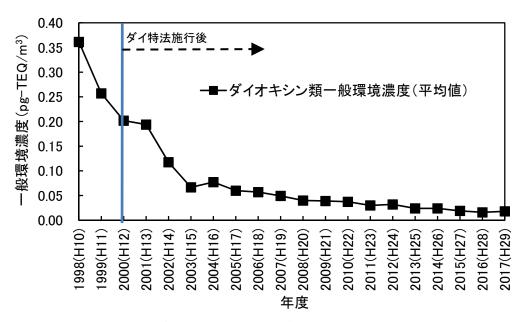


図 24 ダイオキシン類濃度経年変化(一般環境大気中)

2.2.3 常時監視測定結果の検証

Ox の原因物質である NOx や VOC は、固定発生源や移動発生源である自動車、建設機械等からの排出を抑制する取組が行われたことで減少し、大気環境の指標となる NO_2 、や NMHC には低減傾向がみられるが、Ox の全局での環境基準達成に向けては、様々な課題がある。ここでは、東京都環境基本計画に目標を掲げている $PM_{2.5}$ と Ox について、常時監視測定結果からの検証を試みる。

$(1) PM_{25}$

PM_{2.5} の生成は、発生源から直接排出される一次粒子のほかに、ガス状汚染物質が大気中での光化学反応などを受け生成する二次粒子があり、2008(平成20)年度から3か年開催された東京都微小粒子状物質検討会の報告書6によれば、この二次粒子の生成は全体の約2/3を占めると考えられている。

 $PM_{2.5}$ 対策としては、原因物質である NOx、SOx、VOC、アンモニアを対象とした個別の削減対策の推進が必要であり、まずは発生源の特定が重要である。

ア 常時監視測定項目での検証

 $PM_{2.5}$ の前駆物質のうち、常時監視として測定している項目は、 SO_2 、NOx(NO_2 、NO)、NMHC である。これらの濃度は、2.2.2 で述べたように項目単独では各々減少している。

イ PM25成分分析調査結果の検証

 $PM_{2.5}$ は、多種多様な物質の集合体であるため、その構成比を把握することが第一であるが、特に 2/3 を占める二次生成物質は、アの常時監視測定では把握できないため、限られた期間での調査ではあるが、成分分析調査により得られた構成物質の解析をすることにより、明らかになることも多い。

① 季節ごとの傾向

2009 (平成21) 年からの10年にわたる調査結果からは、その構成比について季節ごとの特徴が明らかになっている。

- ・夏季は、硫酸塩(SO_4^{2-})の構成比が大きい傾向がある。
- ・夏季の南風が卓越しており、工場等が集積している湾岸や船舶からの排ガス等重 油燃焼系の汚染物質が流入してくることが考えられる。
- ・ただし、2016(平成 28)年度から硫酸塩(SO_4^2)の濃度が大幅に減少している。
- ・冬季は硝酸塩 (NO3) の構成比が大きい傾向がある。

② 炭素成分

_

全体的な濃度が低下している中、総有機炭素 (T-OC) の低下は見られず、構成比に占める割合が増加してきている。

⁶ 東京都微小粒子状物質検討会報告書(東京都微小粒子状物質検討会:2011(平成23)年7月)

今後は、発生源の特定、成分分析調査結果等を利用した PMF 解析7などの詳細な解析を 行っていく必要があり、構成の 2/3 を占める二次生成の反応の抑制をするために、気象を 勘案した各物質の生成へのかかわりかたを明らかにしていき、対策の優先順位をつけてい く必要がある。

(2) Ox

都内の環境基準達成率は 1990 年度以降 0%と、厳しい状況が継続しているが、光化学スモッグ注意報発令基準である 1 時間値が 0.12 ppm 以上となった日は、減少傾向にあり、改善の傾向は認められている。

2016 (平成 28) 年に策定した「東京都環境基本計画」では、Oxの日最高1時間値と日最高8時間値との関係(参考資料 14 参照)に着目し、新たに環境基準達成までの中間的な目標値を設定し、「年間4番目に高い日最高8時間値の3年平均」で評価することとした。図25 に年間4番目に高い日最高8時間値の3年平均(一般局)を示す。

濃度の増減はあるものの、2002 (平成 14) 年度をピークに全局平均値は微減傾向が継続している。また、全局最大値と全局最小値の差が小さくなってきていることから、値が安定してきていることがわかる。

しかし、政策目標値(0.07 ppm)を、上回った状態が継続している。

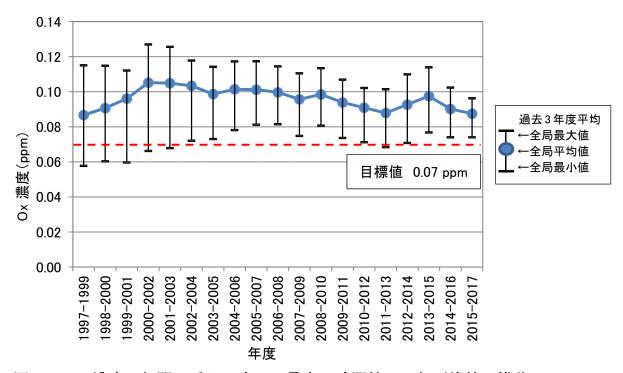


図 25 Ox 濃度の年間 4 番目に高い日最高 8 時間値の 3 年平均値の推移

※都は、2030年度までに、全ての測定局における光化学オキシダント濃度(年間 4番目に高い日最高 8時間値の 3年平均)を 0.07 ppm 以下とすることを政策目標の一つとしている。

-

⁷ PMF (Positive Matrix Factorization)。環境大気中の測定結果から、発生源寄与濃度を推定する手法である レセプターモデルの一種。発生源のデータを必要とせず、大気環境濃度の測定値の変動に着目して解析を行う 手法のこと。他のレセプターモデルとして、CMB 解析がある。

Ox 測定値(1時間値)の頻度分布を20年前と比較すると、低濃度域の分布が明確に減少していることも明らかとなっている(図26参照)。

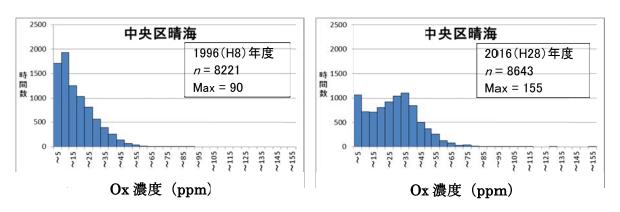


図 26 Ox 測定値 (1 時間値) の頻度分布 (1996 (平成8) 年度と 2016 (平成28) 年度比較)

Ox は、VOC や NOx 等の様々な物質が関与し、紫外線による反応を通じて生成するため、気象条件によっても左右される。関与する物質の中でも、NO は Ox と反応することから、その測定値の解析は Ox の動向を把握する一つの指標にもなり得る。

図 27 に都内の NOx の濃度の推移、図 28 に NO_2/NOx 比を示す。図 27 からは、NOx 濃度は年々減少しており、自排局よりは一般局、区部よりは多摩部の方が低いことが見て取れる。また、図 28 により、NOx を構成する NO_2 と NO の比を考えると、 NO_2 の構成比は増加する傾向にあるが、ここ数年一般局での NO_2/NOx の上昇は頭打ちになっていることがわかる。

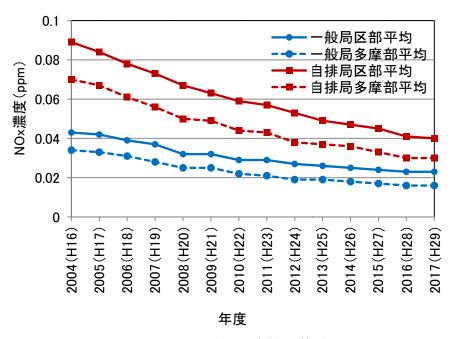


図 27 NOx 年平均値の推移

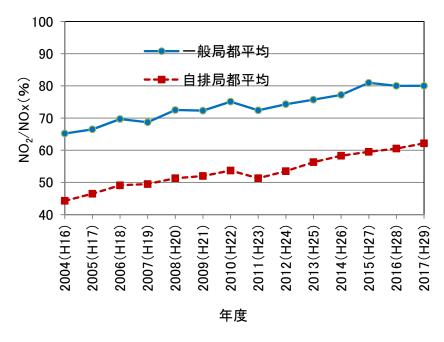
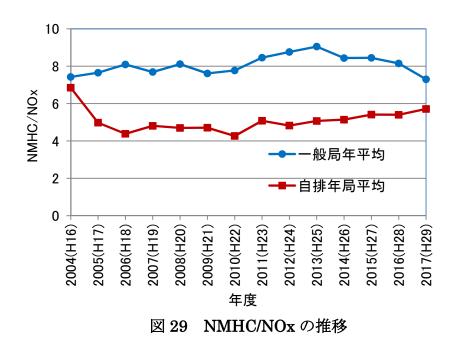


図 28 NO₂/NO_x の推移

Ox の夜間濃度の上昇は、NO タイトレーション効果(NO が Ox と反応して NO_2 となり Ox を減少させる効果)の低下が主な原因と考えられ 8 、これにより Ox の日内変動の最小値が近年上昇したと推測される。

国は、大気常時監視では、Ox の生成に寄与の高い VOC の監視を、測定機のコストや 利便性から NMHC で概況として見ていくこととしマニュアル等の整備をしてきた。

オゾンの生成量は、VOC や NOx の排出量と関係性があり、「オゾンの感度レジーム⁹」と呼ばれている。NMHC の測定値では、VOC そのものをとらえられるわけではないが、代替データとして利用することにより傾向を捉えることが可能と思われる。


図 29 に、NMHC と NOx の比(日平均値の年度平均値の比)の推移を示す。一般局については 2013(平成 25)年度以降減少傾向、自排局は、微増傾向で一般局と自排局の傾向は近づきつつある。NOx、VOC の削減が進んできたため、差が見られなくなってきたことが要因と思われるが、光化学オキシダント対策検討会 10 でも報告されたとおり、同じ削減対策でも削減効果がかわることから、原因物質である NOx と VOC はバランスのとれた着実な削減が必要であり、これらの指標を確認しながら対策の効果を検証していかなければならない。

Ox 対策の施策効果の評価にあたっては、NOx の測定結果も合わせて解析していく必要がある。

⁸ 大気中微小粒子状物質検討会報告書(大気中微小粒子状物質検討会:2019(令和元)年●月)

 $^{^9}$ VOC や NOx 排出量と、オゾン生成量(濃度)には、オゾンの「感度レジーム」と呼ばれる関係性があり、 VOC 律速(VOC に依存する状態)と、NOx 律速(NOx に依存する状態)に大別される。大気中の VOC と NOx の濃度(濃度比)により、感度レジームの状態が決まる。

^{10 2003 (}平成 16) から 2004 (平成 17) 年度まで開催。

(3) その他

2.1 で述べたように、対策が直接大気中濃度に反映される大気汚染物質についての改善は進んだが、様々な物質の複合体である $PM_{2.5}$ や、反応が伴う Ox など、複雑な生成機構を持つ物質については、その生成機構の解明がなされないと効果的な対策ができない状況が明らかになってきている。

そのため、今後は、測定・分析することから一歩進め、大気環境の改善を目指した様々な視点でのモニタリングを考えていくことが必要となっている。

2.3 測定体制についての検証

大気汚染常時監視について、現行の測定体制を調査・検証した。

2.3.1 測定局の配置状況

(1) 都における測定局配置の考え方

ア一般局

環境庁より示された「一般環境大気測定局における測定値の地域代表性について」(昭和 61年3月 測定値の地域代表性に関する検討会)に基づき、ある範囲内(等濃度領域)に収まる領域を一の地域として代表させ、地域全体の汚染状況を把握できるよう、測定局を適正に配置している。

現在、47局で都内全域を評価している。

イ 自排局

広域的な道路沿道の大気汚染状況を監視するために、道路を類型化し、類型に応じて沿道を代表する測定局を配置する。これは、環境庁より示された「自動車排出ガス測定局の配置等について」(平成7年3月自動車排出ガス測定局の配置等に関する検討会)の中の「自排局の当面の配置の在り方」の考え方の基本となったものである。

現在、沿道局 26 局、特殊沿道局 9 局体制で評価している。

【特殊沿道局】

※特殊沿道局:都内には、交差点局、重層局、掘割局の特殊沿道局がある。

交差点局 日比谷交差点局(晴海通りと日比谷通りの交差点)、北品川交差点局(第一京浜国道と山手通りの交差 点)、中原口交差点局(中原街道と桜田通りの交差点)が分類される。

重 層 局 地上の一般道路とその上部を通過する首都高速道路の構造となっている。自動車排気ガスの拡散が上 部の高速道路によって妨げられ、沿道が高濃度となる。

玉川通り上馬局、山手通り大坂橋局、三ツ目通り辰巳局、中山道大和町局、甲州街道大原局が分類される。

掘 割 局 環状七号線に位置し、背後を縁日通り (一般道) と環状七号線を結ぶ道路が通り、大森方向に縁日通りが立体交差している環七通り松原橋局が分類される。

(2) 常時監視体制の整備状況

ア 測定局の設置の経緯

都は、1960 年代に測定局を設置し始め、1970 年代には一般局 35 局、自排局 32 局で 測定を実施してきた。

その後、1985 (昭和 60) 年に「測定局適正配置検討会」、1989 (平成元) 年に「自動車排出ガス測定局適正配置検討会」を設置し、3年間の検討を経てそれぞれ 1988 (昭和 63) 年及び 1992 (平成 4) 年に整備方針を定め、現在、一般局 47局、自排局 35局を設置している。

イ 測定項目の見直し

CO 及び SO_2 については、環境基準を長期間達成していた項目であることから、過去に、測定する局の見直しを実施している(参考資料 15)。

CO は、1996 (平成 8) 年 3 月に設置した「東京都大気環境常時測定局における測定項目数の見直しに係る検討会」からの報告(同年 8 月)を受け、1996 (平成 8)年度から、69 局から 28 局での測定とした。

また、 SO_2 は、1998(平成 10)年 3 月、同検討会から報告を受け、1999(平成 11)年度から、35 局から 25 局での測定とした。

(3) 事務処理基準との比較及び検証の必要性

ア 事務処理基準との比較

常時監視の測定項目と測定局数は、「大気汚染防止法第22条の規定に基づく大気の汚染の状況の常時監視に関する事務の処理基準」(以下「事務処理基準」という。)に準拠している。事務処理基準に基づく測定項目ごとの測定局数と現行の測定局数は表5のとおりとなっている。

表 5 事務処理基準に基づく測定局数と現行の測定局数(測定項目別)

	事務処理基準に	現行の	
測定項目	基づく測定局数 1)	測定局数	(b) - (a)
	(a)	(b)	
SPM	38	82	44
SO_2	19	25	6
CO	19	28	9
NO_2	76	79	3
$\mathrm{PM}_{2.5}$	76	82	6
Ox	56	41	$\Delta 15^{2)}$
NMHC	19	28	9

- 1) 上表における事務処理基準に基づく測定局数は、以下のとおり算定している。
 - ① 人口及び可住地面積による算定
 - ア 人口 75,000 人当たり 1 つの測定局を設置
 - イ 可住地面積 25km² 当たり 1 つの測定局を設置
 - ② 環境濃度レベルに対応した測定局数の調整
 - ③ 測定項目の特性に対応した測定局数の調整
- 2) 大防法及び都民の健康と安全を確保する環境に関する条例(旧東京都公害防止条例)に基づき、1972(昭和 47)年に「東京都大気汚染緊急時対策実施要綱(オキシダント)」を定め、光化学スモッグ注意報の発令などの大気汚染緊急時対策を実施しており、都内を 8 地域に分けて、各地域の基準測定点(一般局 41 局)を設定している(参考資料 16 参照)。そのため、事務処理基準に基づく測定局数よりも少ない測定局での測定となっている。

各項目の測定体制に関する検証の必要性については次のように整理できる。

イ 検証の必要性

(ア) PM_{2.5} 及び Ox

PM_{2.5} 及び Ox については、環境基準の全局達成に至っておらず、また、都の政策 目標についても達成していないことから、引き続き現在のモニタリング体制において 常時監視を実施するべきである。

(\land) NO₂

表 4 のとおり、 NO_2 は、事務処理基準の測定局数をほぼ満たしている状況にあり、図 30 のとおり、一部の自排局(特殊沿道局)では、二酸化窒素の濃度が高い傾向であるため、環境基準を達成していない測定局がいまだにある。

さらに都の政策目標となっている $PM_{2.5}$ や Ox では、これらの生成への寄与が高い NOx の排出削減が対策に重要な意味を持つことを踏まえ、現状を維持して監視を継続するべきと考える。

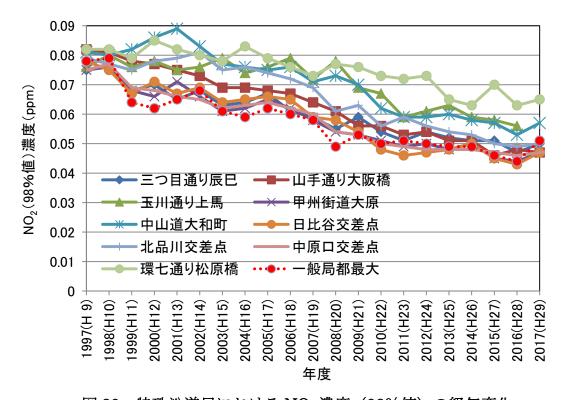


図 30 特殊沿道局における NO2 濃度(98%値)の経年変化

(ウ) SO₂及び CO

SO₂及び CO については、前述したとおり測定項目の見直しを既に実施している。 また、事務処理基準に基づく測定局数はやや上回っている程度ということを踏まえ て、これまでどおりの体制で常時監視を継続するべきと考えられる。

(エ) NMHC

NMHC は、事務処理基準に基づく測定局数を満たしており、やや上回る程度の地点数である。

NMHC は、 $PM_{2.5}$ や Ox 対策では、VOC の概況を知る指標という重要な役割を担っており、削減状況の監視をしていくことが重要であることを踏まえ、これまでどおりの体制で常時監視を継続するべきと考えられる。

(才) SPM

2003 (平成 15) 年から一都三県 (千葉県、埼玉県、神奈川県) で開始したディーゼル車規制の成果に伴い、SPM 濃度は大幅に改善された。

環境基準を全ての測定局において安定して継続して達成していること、現行の測定局数が事務処理基準と照らし合わせると、他の 6 項目と異なり都の測定局数が突出して多いこと等を踏まえ、測定体制の検証を実施する余地があると考えられる。

2.3.2 SPM についての検証

(1) 検証の手順

SPM の測定体制を検証するに当たり、環境基準の達成状況、局地汚染の捕捉状況、一般局と自排局の濃度差の状況について過去データとの比較等により確認したうえで、濃度の日平均値の時系列データを用いたクラスタ解析を実施し、測定局間の類似性を調査した。

(2) 過去データとの比較

ア 環境基準の達成状況

環境基準については、前述したとおり 2014 (平成 26) 年度以降、全ての測定局において達成している。

また、図 31 及び図 32 に示すとおり、一般局と自排局の 2%除外値(環境基準の評価に使用する値)分布も、近年は環境基準(赤点線 0.10 mg/m³(100 μg/m³))よりもかなり低い水準にあることから、一般局、自排局ともに、環境基準を安定的に達成しているといえる。

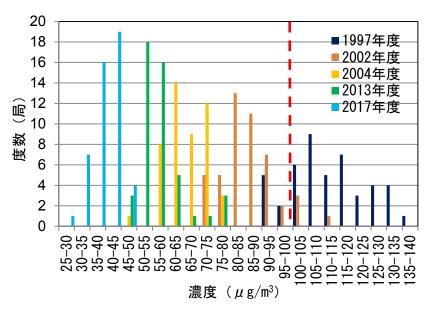


図 31 一般局における SPM 濃度 2%除外値頻度分布

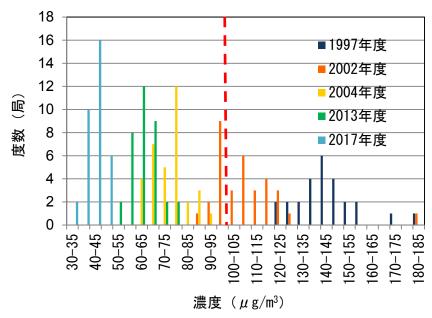


図 32 自排局における SPM 濃度 2%除外値頻度分布

イ 局地汚染の捕捉状況

交差点、重層構造、掘割構造等の道路に設置された特殊沿道局は、自動車交通量が多いこと、道路構造によって拡散が妨げられること等で、自動車排出ガスの影響を強く受けやすく、通常の道路環境とは異なり大気汚染物質の濃度が高くなる傾向が過去にあった。

また、一般局のうち、湾岸地域の4局(中央区晴海、港区台場、品川区八潮、江戸川区南葛西。以下ここでは「湾岸局」という。)では、臨海部の工場や船舶等の排気の影響を受けやすいため、これらについても大気汚染物質の濃度が高くなる傾向が過去には見られた。

そのため、現在の特殊沿道局及び湾岸局について、局地汚染の捕捉状況を検証した。

(ア) 特殊沿道局における汚染状況

特殊沿道局における 2%除外値の経年変化は図 33 のとおりである。2005(平成 17) 年度以降、一般局とほぼ同じ濃度で推移しており、特殊沿道局で濃度がより高くなるといった局地汚染の状況は観測されていない。

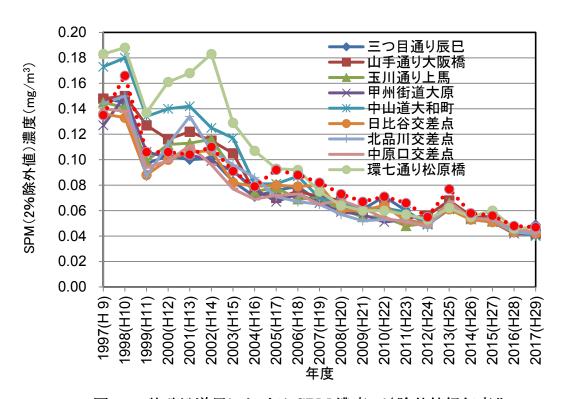


図 33 特殊沿道局における SPM 濃度 2%除外値経年変化

(イ) 湾岸局における汚染状況

湾岸局における 2%除外値の経年変化は図 34 のとおりである。一般局とほぼ同じ 濃度で推移しており、湾岸局で濃度がより高くなるといった局地汚染の状況は観測されていない。

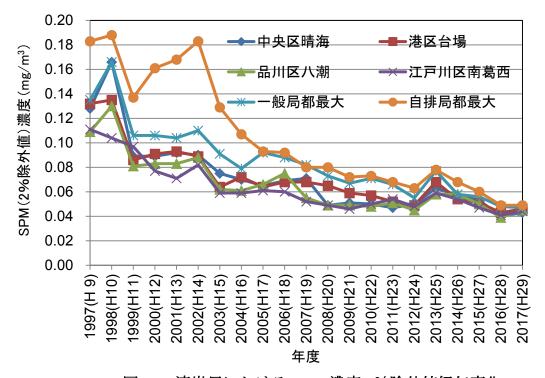
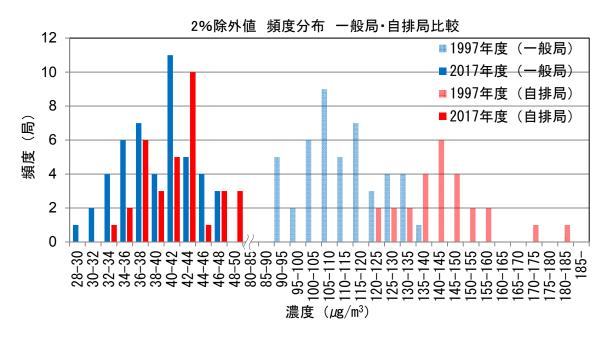
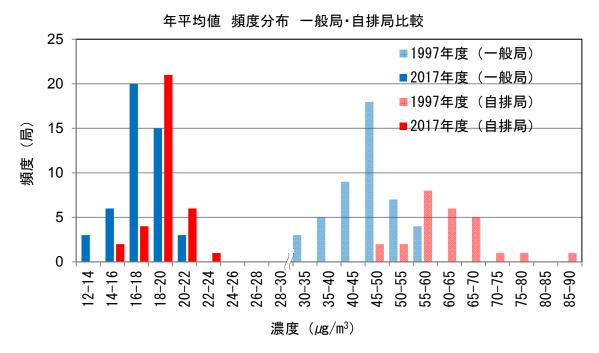



図 34 湾岸局における SPM 濃度 2%除外値経年変化


ウ 一般局と自排局の濃度差

一般局と自排局の 2%除外値の分布については図 35、年平均値の分布については図 36 のとおりである。1997(平成 9)年度については、一般局と自排局では分布が異なるが、2017(平成 29)年度については分布がほぼ重なる。SPM については、自排局の 測定結果も地域における濃度を反映しているためと考えられる。

注 階層の刻み幅:1997 (平成9) 年度は5 µg/m³、2017 (平成29) 年度は2 µg/m³とした。

図 35 SPM 濃度 (2%除外値) の頻度分布の比較 (1997 (平成9) 年度と 2017 (平成29) 年度)

注 階層の刻み幅: 1997 (平成 9) 年度は $5 \mu g/m^3$ 、2017 (平成 29) 年度は $2 \mu g/m^3$ とした。 図 36 SPM 濃度 (年平均値) の頻度分布の比較 (1997 (平成 9) 年度と2017 (平成 29) 年度)

一般局と自排局について、2%除外値及び年平均値に大差がみられなくなった要因の 一つとして交通量の変化があげられる。

自排局については、1992 (平成 4) 年 6 月「自動車排出ガス測定局の整備方針」(以下「自排局整備方針」という。)に従い、表 6 に示す日交通量(大、中、小)及び表 7 に示す大型車混入率及び周辺建物状況(1 群から 6 群)を基に、都心部、周辺区部、多摩部の道路を 54 種類に類型化し、代表する道路に測定局を配置(沿道局)している。

表 6 自排局整備方針に基づく日交通量の定義

日交通量		
大	5万台以上	
中	3万台以上5万台未満	
小	3万台未満	

表 7 自排局整備方針に基づく群の定義

	***	•
群	大型車混入率	周辺建物状況
1群	大(15%以上)	高層
2 群	大(15%以上)	中低層密集
3 群	大(15%以上)	中低層散在
4 群	小(15%未満)	高層
5 群	小(15%未満)	中低層密集
6 群	小(15%未満)	中低層散在

2015 (平成 27) 年度全国道路・街路交通情勢調査(道路交通センサス)の結果に、 沿道局の日交通量と群(周辺建物状況は不変と仮定)を当てはめ、現状と比較した。 都内交差点等での交通量は減少してきており、日交通量 5 万台以上のか所が大きく減ったことがうかがえる。また、大型車混入率が減少した道路もあるとみられる。

(3) 測定局間濃度の日変動の類似性の調査

排出源の状態が比較的同等な過去3年度(2015(平成27)から2017(平成29)年度まで)の日平均値のデータを用いて、測定局間の類似性を調査した。

なお、過去3年間の東京の気象は、気温は「かなり高い」又は「平年並み」、降水量は「多い」又は「平年並み」、日照時間は「かなり多い」又は「平年並み」であった(参考資料17参照)。

ア 相関行列11による検証

測定局間の類似性を調査するため、各測定局における3年間の日平均値のデータから相関係数を計算し、81局対81局の行列を作成した。

区部・多摩部において、一般局対一般局、自排局対自排局の相関係数は高い傾向がみられるが、区部内及び多摩部内では一般局対自排局についても相関係数が高い傾向がみられた。

イ 地域的特徴の検証

濃度の日変動の類似性が高い測定局が逐次的にまとめられていく状況を示す樹形図¹² を作成し、図 37 に示す。縦軸の数値が小さいほど共通性が高いことから、適切にグループ分けできると考えられる 6 分割を採用した。

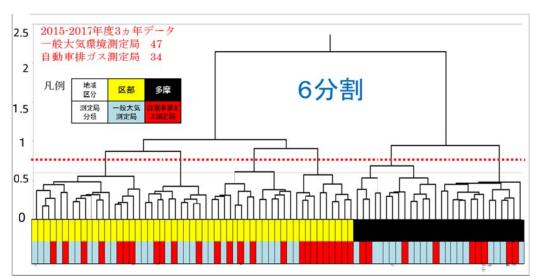


図 37 SPM 日平均値による樹形図 (2015 (平成 27) 年から 2017 (平成 29) 年の 3 ヵ年) 拡大図は参考資料 18 のとおり

グルーピングの結果、領域1は多摩部の丘陵地から台地の部分にかけて、領域2は武蔵野台地中央部、領域3と領域6は区部の台地部分、領域4及び領域5は0メートル地帯を含む低地部であり、かつ、東側と湾岸部に分割されていることで、地形の特徴とも附合がみられる。

-

¹¹ 相関行列 ここでは濃度の時間変動に関する測定局間の相関係数の行列をいう。

¹² 樹形図 濃度の時間変動の類似性が高い測定局が逐次的にまとめられていく状況を示す図をいう。

以上のことから、濃度の日変動の類似性が高い測定局は、地域区分・地形の特性がみられることが分かった。

今後は、次の点に留意して、検討していく必要がある。

- (ア)地域区分、地形の特徴が現れている各領域の中で気象的条件等を考慮すること。
- (イ) 平均値・分散の検定結果を考慮すること。
- (ウ) 地域の中での測定局の密度を考慮すること。

2.3.3 モニタリングデータを活用した解析事例

都では、独自のモニタリング結果を利用した解析を実施しており、新たな知見を得ることで次の対策へつなげている。

以下に、結果の概要を示す。

(1) スーパーサイトを利用した調査解析

2016(平成 28)年 4 月に、都環研及び狛江局の 2 か所で開設したスーパーサイトにおいて採取した $PM_{2.5}$ 質量濃度及び化学成分の分析結果について、次の解析を実施した。

ア目的

PM_{2.5} 質量濃度及び化学成分の挙動解析を通じた PM_{2.5} の生成機構の解明

イ 調査概要

2016 (平成 28) 年 4 月から 2018 (平成 30) 年 5 月末まで、都心部(都環研)及び都市郊外部(狛江局)において大気エアロゾル化学成分連続自動分析装置を用い、エアロゾル化学成分の高時間分解能測定を行った。

ウ結果概要

(ア) PM_{2.5} 日平均値の比較

狛江局における $PM_{2.5}$ 濃度の日平均値は都環研の 8 割程度を示し、良い直線性の相関 関係が見られる(図 38)。

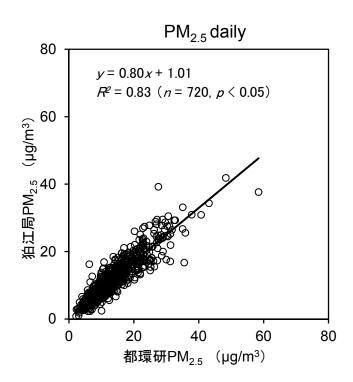
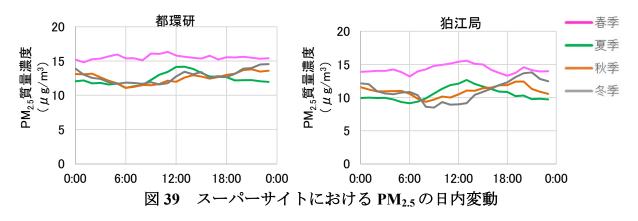



図38 スーパーサイトにおける PM_{2.5} 日平均値の相関

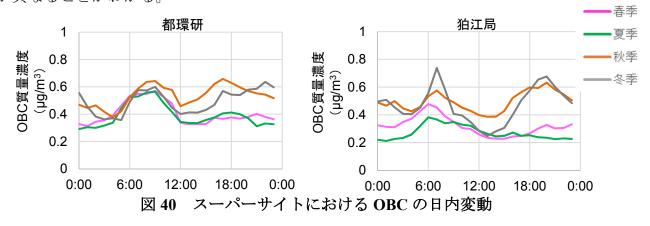

(イ) PM_{2.5} 日内変動

図 39 のとおり、 $PM_{2.5}$ の日内変動は狛江局及び都環研でどの季節も同様の傾向を示している。

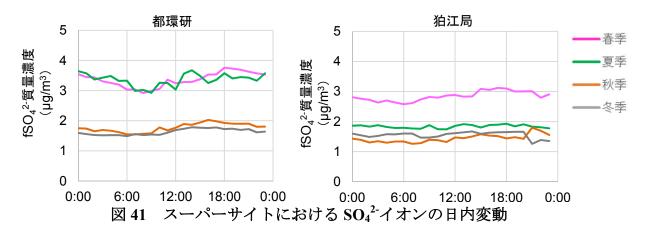

(ウ) OBC 日内変動

図 40 のとおり、狛江局における光学的黒色炭素(OBC Optical Black Carbon)の グラフの傾きが都環研よりも小さいことやばらつきが大きいことから、一次排出の傾向 が異なることがわかる。

(エ) **SO**₄²·イオン日内変動

図41のとおり、 SO_4 2-イオンは夏季において都環研で狛江局よりも高い傾向が見られ、原因としては SO_2 の発生源があると想定される南側(東京湾岸地域)からの風が夏季に高頻度であることが考えられる。

(2) VOC 連続測定結果を利用した調査解析

2011 (平成 23) 年度、2013 (平成 25) 年度及び 2014 (平成 26) 年度には、VOC 連続測定結果等を利用した解析調査を実施している。

解析調査のうち、Oxの把握に関する内容に絞った結果の概要と、2017(平成29)年度に都環研が実施した解析調査の概要は、次のとおりとなっている。

ア 調査解析事例 1 (2011 (平成 23) 年度調査)

(ア) 目的

区部の VOC 連続測定データを解析し、Ox 濃度の変動要因である VOC の組成変化のオゾン生成シミュレーションによる確認

(イ)調査概要

区部の VOC 連続測定データや NOx、CO などの常時監視データを用い、オゾン生成シミュレーションを実施した。シミュレーションはワンボックスモデルを利用し、化学反応モデルとして CBM iv を用いた。シミュレーションに必要なアルデヒド類や低沸点の VOC 等の VOC 連続測定で測定できない物質については、有害大気汚染物質調査の結果を利用し、関連する VOC 成分(アルデヒド類であれば、前駆物質であるアルケン)との関係から推計した。

連続測定により得られた総 VOC 濃度及び NOx 濃度が同程度にもかかわらず、Ox 濃度が異なるシミュレーション結果が出た時の VOC 個別成分別濃度を確認し、Ox 濃度が高い場合に寄与が大きい物質を推定した。

(ウ) 結果概要

_

Ox 濃度が高い場合に濃度が高い VOC 成分として、m,p-エチルトルエン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、エチルベンゼン、m,p-キシレンなどを確認し、 MIR^{13} が高い物質により、Ox 濃度が影響を受けることが示唆される結果が得られた。

¹³ Maximum Incremental Reactivity の略。単位 VOC 量(g)が生成しうるオゾン量(g)を示す最大オゾン 生成能。値の出典: William P. L. Carter. Updated Maximum incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications. California Air Resources Board Contract 07-339. 2010

イ 調査解析事例 2 (2013 (平成 25) 年度調査)

(ア) 目的

Ox 高濃度時の気象条件日を対象に、生成に寄与する VOC 成分の確認

(イ)調査概要

一都六県の Ox 高濃度時(日最高 120 ppb 以上)における気象条件(積算日射量: $17 \, \mathrm{MJ/m^2}$ 以上、日最高気温: $30 \, \mathrm{C}$ 以上、 $6 \, \mathrm{\sim} 12$ 時の平均風速: $4 \, \mathrm{m/s}$ 以下、風向: $9 \, \mathrm{\sim} 11$ 時に南風となった日)を対象に、Ox 濃度と連続測定で得られた VOC 成分濃度の関係を調査した。

(ウ) 結果概要

Ox 高濃度気象条件における各測定地点の VOC 物質群濃度 (MIR 換算濃度) と一都六県の Ox 濃度の関係は、図 42 及び図 43 のとおりとなっている。

大田区東糀谷では Ox 濃度が増加するに従い、光化学反応性が低いアルカンの濃度増加が顕著であった。一方、江東区大島では芳香族炭化水素濃度が増加する傾向があることが示された。

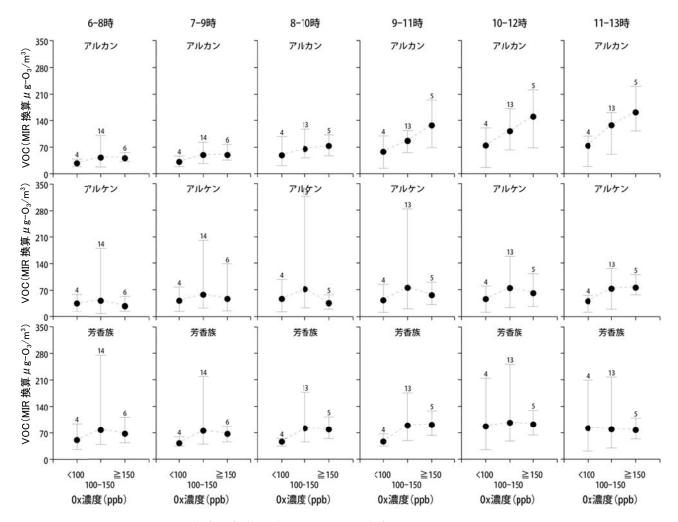


図 42 Ox 高濃度気象条件時における Ox 濃度別の VOC 物質群(大田区東糀谷)

注) 図の●は平均、バーは最大、最小、数字は出現日数

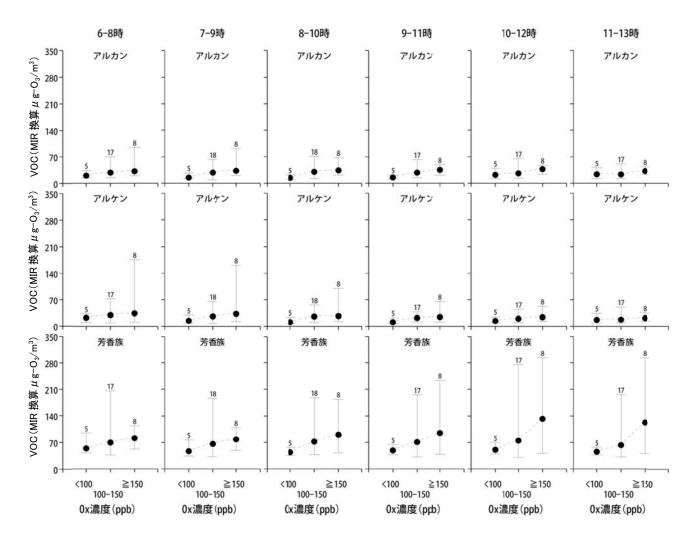


図 43 Ox 高濃度気象条件時における Ox 濃度別の VOC 物質群(江東区大島)

注)図の●は平均、バーは最大、最小、数字は出現日数

ウ 調査解析事例 3 (2014 (平成 26) 年度調査 (その 1))

(ア)目的

多摩部の VOC 連続測定データの解析から、多摩部の Ox 生成機構の特徴を把握

(イ)調査概要

多摩部における、2011(平成23)年4月~9月及び2013(平成25)年7月31日~8月12日における Ox 高濃度気象条件日(小金井市本町局で日最高気温 30^C以上かつ日積算日射量 15 MJ/m²以上、58 日)を対象に、町田市能ヶ谷局及び東大和市奈良橋局(設置場所は図 44 参照)の VOC 連続測定データと多摩部の日最大 Ox 濃度を比較した。

図 44 調査時のVOC 連続測定機設置場所

(ウ) 結果概要

Ox 濃度に対する VOC の影響を確認するためには、Ox 濃度が上昇する前の VOC を調査する必要がある。

多摩部の Ox は午後から夕方にかけて高濃度になることから、風上側である町田市能 ヶ谷局の午前及び午後の VOC 成分濃度に着目した。

Ox 高濃度時に、町田市能ヶ谷局で濃度が増加していた VOC 成分を表 8 に示す。

また、Ox 高濃度時に増加していた物質には、MIR が大きいトルエンやキシレンが含まれることも確認された。

なお、東大和市奈良橋局及び Ox 高濃度時でも増加していなかった VOC 成分を含む 町田市能ヶ谷局での測定結果については、参考資料 19 に示す。

表8 Ox 高濃度時に濃度が増加していた VOC 成分(町田市能ヶ谷局)

		朝	(7-9時)	午前	(10-12時)	午後	(13-15時)
MIR	物質名	Ox120 以上	Ox高濃度時 に濃度が増加 していた成分	Ox120 以上	に濃度が増加していた成分	Ox120 以上	Ox高濃度時 に濃度が増加 していた成分
	Toluene	26.97	**	16.18	**	13.21	**
	Ethylbenzene	5.29	**	2.91	*	3.09	**
	m,p -Xylene	11.69	*	5.72	*	5.17	*
7.64	o -Xylene	4.16	*	2.16	*	2.07	**
1.23	iso -Butane	2.32	**	1.53	***	1.87	***
	1-Butene	4.13	**	3.43	**	3.71	***
	n-Butane	3.71	**	2.59	***	3.49	***
1.45	iso -Pentane	4.28	**	2.87	**	5.49	***
7.21	1-Pentene	1.43		0.76		1.85	***
1.31	<i>n</i> -Pentane	2.05	*	1.40	*	3.13	***
10.61	2-Methl-1,3-butadiene	15.75	*	10.49		11.87	*
0.97	2,3-Dimethylbutane	1.17	*	0.77		1.04	***
1.80	3-Methylpentane	1.32	*	0.86		1.10	***
	<i>n</i> -Hexane	1.19	*	0.65		1.09	***
5.92	<i>m,p</i> -Ethyltoluene	4.16	*	2.34	*	2.25	*
	1,3,5-Trimethylbenzene	2.54	*	1.38	*	1.14	*
	o-Ethyltoluene	1.19	*	0.71		0.68	
	1,2,4-Trimethylbenzene	7.35	*	3.66		3.49	*
11.97	1,2,3-Trimethylbenzene	2.08	*	1.14	*	1.01	*
4.51	Camphene	3.25	*	1.03	*	0.78	

注) Ox120 以上: Ox120 ppb 以上時の MIR 換算濃度の平均値($\mu g/m^3$)

Ox 高濃度時に濃度が増加していた成分:

Ox120~ppb 以上/Ox~80ppb 未満 *:1.0~1.5 **:1.5~2.0 ***:2.0 以上 Ox~ 高濃度時に濃度が増加しない成分 (*がつかない成分) は表には記載していない

エ 調査解析事例 4 (2014 (平成 26) 年度調査 (その 2))

(ア)目的

都環研観測結果を基にした、多摩部の Ox 生成機構の特徴の把握

(イ)調査概要

VOC 連続測定で把握できない物質 (アルデヒド類など) も含めた解析を行うため、 都環研が町田市能ヶ谷局及び東大和市奈良橋局で実施した「VOC・アルデヒド測定データ (平成 25 年度測定)」を基に、Ox 生成に寄与する VOC 成分の解析を実施した。 東大和市奈良橋局で Ox 濃度が上昇し、かつ、気象庁データにより町田から東大和に気塊が移動したことが確認できた日時において、町田市能ヶ谷局と東大和市奈良橋局(3 時間後)の VOC 成分濃度を比較し、Ox 生成に伴い消費された VOC 成分や増加した VOC 成分を確認した。

また、2011(平成 23)年度調査と同様の手法で、VOC 成分や NOx を減少させた場合のオゾン生成シミュレーションを実施した。

(ウ) 結果概要

変動幅が大きかった VOC 成分のリストを表 9 及び表 10 に示す。

気塊が町田から東大和へ移動する間に、Ox の濃度増加とは反対に濃度が減少する VOC 成分(Ox 生成に寄与していると推測される物質)として、トルエン、エタン、メチルエチルケトン、isoペンタン、プロパン、nペンタンや、MIR が大きいキシレン、エチレン、プロピレン、2-メチル-1,3-ブタジエン(イソプレン)等を確認した(表9)。

一方で、アルデヒド類は増加しており、二次生成によるものと推測される (表 10)。 次に、VOC 成分や NOx を減少させた場合のオゾン生成シミュレーションの結果を 図 45 に示す。

NOx 濃度を減らした場合(初期濃度(横軸)を小さくした場合)、オゾン濃度が減少する結果が得られた。一方で、ブタン及びペンタン濃度を減らした場合とトルエン及びキシレン濃度を減らした場合では、オゾン濃度の減少は見られなかった。以上より、多摩部においては、VOC 成分を減らすよりも NOx を減らす方が、Ox 削減に寄与することが示唆される結果が得られた。

表 9 Ox 増加時に減少する VOC 成分

物質名	MIR	ΔVOC/ΔΟχ
Toluene	4.00	-0.044
Ethane	0.28	-0.025
Methylethylketone	1.48	-0.022
Isopentane	1.45	-0.019
Propane	0.49	-0.017
<i>n</i> -Pentane	1.31	-0.010
Ethylene	9.00	-0.010
<i>m</i> -Xylene + <i>p</i> -Xylene	7.80	-0.010
2-Methylpentane	1.50	-0.009
3-Methylpentane	1.80	-0.006
Propylene	11.66	-0.005
Benzene	0.72	-0.005
Trichloroethylene	0.64	-0.005
Butylacetate	0.83	-0.005
2-Methyl-1,3-butadiene	10.61	-0.003

(注) ΔOx,ΔVOC の単位は μg/m³

ただし ΔOx と ΔVOC の関係に線形性が見られない成分は測定値に外れ値の入っている可能性が考えられるため除外した。

 $(Dichloromethane, Ethylacetate, Acetone)_{\circ}$

表 10 Ox 増加とともに増加する VOC 成分

物質名	MIR	ΔVOC/ΔΟχ
Formaldehyde	9.46	0.037
Acetaldehyde	6.54	0.024

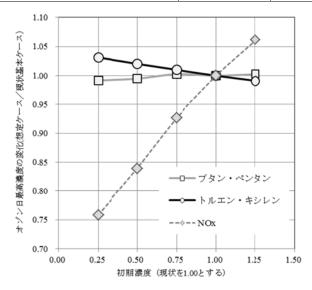


図 45 VOC 及び NOx 濃度を増減させた時のオゾン生成シミュレーション結果

才 調査解析事例 5 (2017 (平成 29) 年度調査 (都環研調査))

(ア)目的

東京湾沿岸部の工業地域における、Ox 生成に影響の大きい VOC 成分や発生源の 把握

(イ)調査概要

東京 23 区南部の工業地域において、約 3km 四方の範囲で複数地点の大気測定を実施した。調査は 2017 (平成 29) 年度の各季節 1 回、春は 5 月 9 日~10 日、夏は 8 月 1 日~2 日、秋は 11 月 7 日~8 日、冬は 2 月 6 日~7 日に実施し、それぞれキャニスターによる 24 時間採取を行った。採取した試料は、GC/MS/FID により 125 物質の濃度を測定した。濃度は、MIR を乗じてオゾン生成能に換算して評価した。

(ウ) 結果概要

狭い調査地域の中で、各地点のオゾン生成能に差がみられた。また、オゾン生成能は秋が最も高く、夏が最も低かった。オゾン生成能の構成割合は、春の調査日はPRTR制度対象外の物質が多いアルケンの割合が最も高く、次が芳香族であった。

また、夏、秋、冬の構成割合は比較的類似しており、最も高いのが芳香族、次いでアルケンであった(図 46)。

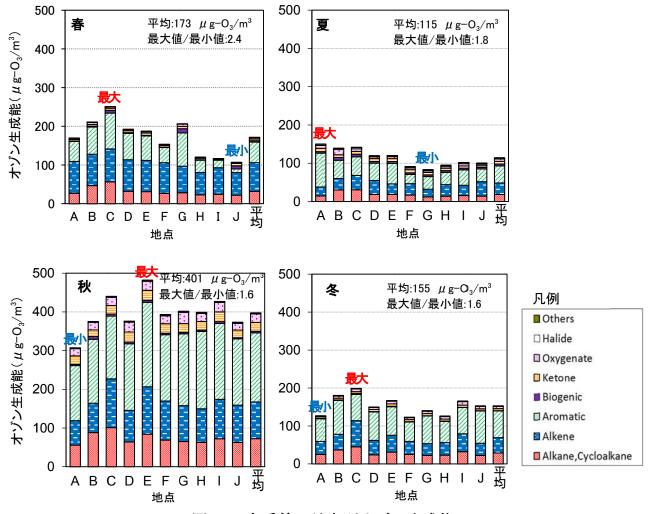


図 46 各季節の地点別オゾン生成能

オゾン生成能における構成割合が高かった物質について、地点間の差が大きい物質 (トルエン、m,pキシレン) と差が小さい物質 (エチレン、プロピレン) があった (図 47)。前者は濃度の高い地点の近くにその発生源がある物質、後者は調査対象地域外からの移流の影響が大きい物質であると考えられる。

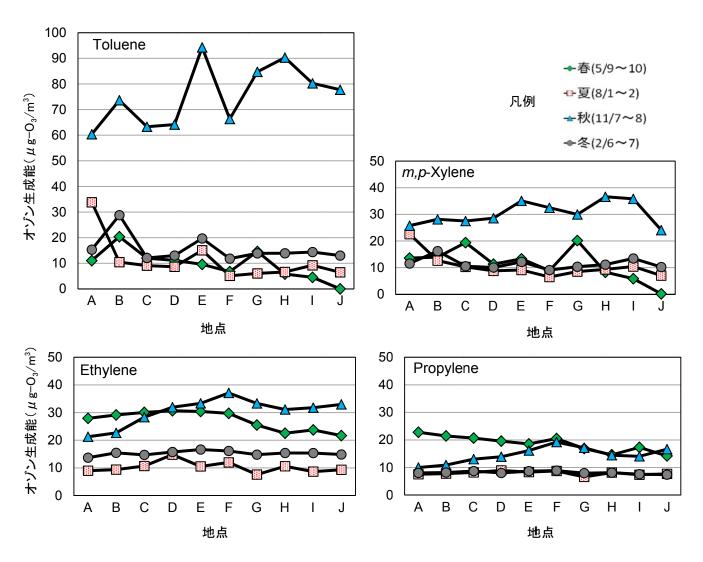


図 47 各季節の物質別オゾン生成能

2.3.4 測定技術の検証

(1) VOC 連続測定技術

VOC 連続測定に関しては、測定技術を考慮する必要がある。現在の測定技術による物質ごとの連続測定の可否について、表 11 に示す。

表 11 VOC 各物質の連続測定の可否

物質	連続測定の 可否	現在のモニタリング方法	備考
エタン、エチレン、プ ロパン等の低沸点物質	×	VOC 多成分分析(GC-FID)	
プロピレン等の比較的 低沸点の物質	Δ	VOC 多成分分析 (GC-FID) 連続測定対象 (優先定量外) だが、 精度が低い	濃縮工程が課題
ホルムアルデヒド	0	有害大気汚染物質調査 連続測定対象外	*
アルデヒド類 (ホルム アルデヒド除く)	×	有害大気汚染物質調査(アセトアルデヒドのみ)	
極性物質 (アルコール類、ケトン類等)	Δ	VOC 多成分分析(GC-MS) 連続測定対象外	除湿工程が課題

※ホルムアルデヒドの連続測定については、化学蛍光式連続測定機¹⁴を使用する方法があり、調査研究における使用実績がある。しかし、湿式法であるため、1週間以下の頻度でのメンテナンスや廃液処理が必要であるなど、現在使用している VOC 連続測定機(メンテナンスは3週間ごと)と比べて手間がかかるという問題がある。

(2) 測定機の精度向上

特に SO_2 と CO については、環境基準を達成しているだけでなく、その濃度は常時監視で使用している測定機の測定下限値に近づきつつある状況である。

しかし、今後、高感度の測定値が得られれば、環境基準を全く達成できていない Ox や 100%に達していない $PM_{2.5}$ の高濃度時の生成機構や挙動との関連について、有用なデータを提供することが可能となりうる。このため、昨今の測定機の技術開発状況について測定機メーカーに行ったヒアリング結果は次とおりだった。

-

 $^{^{14}}$ アセチルアセトン(2,4-ペンタンジオン)とアンモニア溶液中でのホルムアルデヒド液相反応を用いた測定機。この反応により、3,5-ジアセチル-1,4-ジヒドロルチジン(DDL)が生成する。DDL は、410 nm に吸収帯があり、510 nm 付近で強い蛍光を発光し、この蛍光発光を電子倍増管で測定する。

\mathcal{T} SO₂

都内の平均値は、ほぼ測定下限値に近い状況であるが、環境基準評価以外の需要が少ないため、高感度測定機は現在、海外の1社のみ販売されており、その他の国内メーカーでは、開発されていない。

ただし、今後需要があれば、検討の余地があるという回答であった。

表 12 メーカー別高感度 SO2 計の開発状況

メーカー	現行製品の下限値	高感度製品の開発状況
A社	1 ppb (0.1 ppb まで表示のみ可能。 ただし、 精度保証なし。)	現在なし (需要がないため)
B社	0.5 ppb(0.1 ppb の桁まで表示。ただし、 0.5 ppb 未満は精度保証なし)	現在なし。以前の型式で高感度計製造ありも、以降なし。
C社	0.5 ppb (フルスケール 0~50 ppb レンジの 1%)(0.1 ppb の桁まで表示。ただし、0.5 ppb 未満は精度保証なし。)	現在なし

✓ CO

都内の平均値はほぼ測定下限値に近づいてきている状況であるが、高感度測定機は現在 SO₂ 同様に国内メーカーでは、開発されていない。

ただし、今後需要があれば、検討の余地があるという回答であった。

表 13 メーカー別高感度 CO 計の開発状況

メーカー	現行製品の下限値	高感度製品の開発状況
A社	製品自体の取扱いなし	現在なし
B社	0.05 ppm に対し 0.01 ppm の桁まで表示。0.05 ppm より小さい値は精度保証なし。	現在なし
C社	0.05 ppm (フルスケール 0~5 ppm レンジの 1%)	現在なし

2.3.5 検証及び調査解析から導かれた課題

(1) 常時監視

今回の検証は、SPM を中心に実施したが、環境基準が設定されているその他の大気汚染物質についても、国における測定項目に関する検討状況を踏まえつつ、引き続き検証を行っていく必要がある。

また、社会状況の変化や気候変動に伴う気象条件の変化に応じ、的確な時期に検証を実施して効率的な常時監視体制が取れているかの確認をしていく必要があると考える。

(2) PM_{2.5} 成分分析

これまで、高・低濃度日の個別検証を継続しつつ、排出量実態調査やインベントリの再整備とあわせて、施策の効果を検証してきたが、硫酸塩($SO_4^{2^2}$)、硝酸塩(NO_3)及び有機炭素は寄与率が高いため、濃度の推移等に着目し、さらに挙動を把握していく必要がある。

特に、傾向がつかみやすい SO_4^2 、 NO_3 については、スーパーサイトで得られる測定値等を利用し、季節別に、 $PM_{2.5}$ への関与を解明し施策に資する解析を実施していく必要がある。

夏季の SO₄2-の濃度低下については、大陸からの移流の変化、局地的な発生源からの排出量の変化等についての検証や、炭素フラクションの変化について、発生源の変化、分析方法の変更等要因を検証してきたが、さらに解析を充実させるために、高濃度日の成分分析が効率的に実施できる手法を検討するとともに、クラスタ解析等による、より効率的な測定ができる地点の選定について検証することも検討していく必要がある。

また、発生源寄与解析の充実のために、常時監視とそのほかのモニタリングとの連携や 有機マーカーを用いた調査についても検討していくべきであろう。

(3) スーパーサイト

スーパーサイトを設置した 2 地点の両方において、 $PM_{2.5}$ 質量濃度及び化学成分の挙動は同様の傾向を示しており、地点における違いよりも季節による違いが明確に見られた。 今後は、区部における NO_X の挙動等について、より詳細な分析を行い、 $PM_{2.5}$ の削減に寄与させていく必要がある。

(4) VOC 連続測定

VOC 連続測定は、

- ・工場や事業場が比較的多い地域の周辺や道路沿道に測定地点を設けている
- ・国の化学物質排出・移動量届出 (PRTR: Pollutant Release and Transfer Register) 制度や都の化学物質適正管理制度において、比較的環境への排出量が多い 9 物質を定量化対象に含んでいる (図 48)

という特徴を持ち、より詳細で効果的な VOC 削減対策の検討や効果の検証で活用することを目的として実施している。

しかし、現在、VOC連続測定1か所につき一月分のデータを確定させるのに約2日を

要しており、限られた費用や人的な側面を考慮すると、16 物質が対応可能な範囲となっている。(参考資料 20 に、データ確定作業を含めた VOC 連続測定装置の基本作業の内容を示す。)

一方で、独自調査の解析から、Ox 生成に関して、16 物質以外の把握が必要であることが確認されていることから、今後、より一層の $PM_{2.5}$ 、Ox の生成機構の解明及び対策効果の把握に向けて効果的なモニタリング体制を構築するためにも、改めて測定体制を検証し、適切に見直す必要がある。

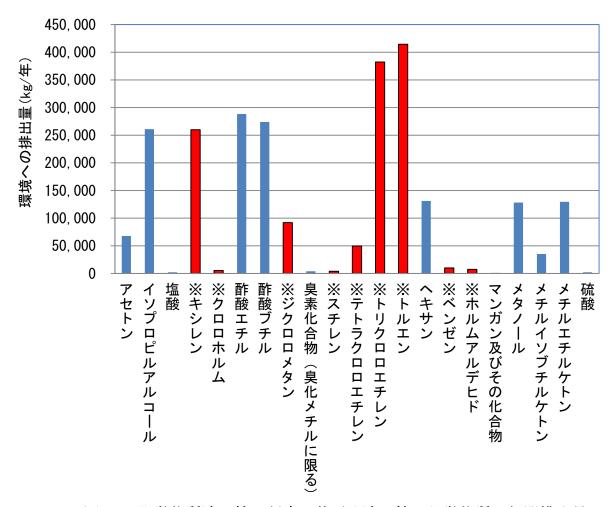


図 48 化学物質適正管理制度に基づく適正管理化学物質の年間排出量 注)※は定量化対象の 16 物質

3 検討結果のまとめ

3.1 モニタリング体制の在り方

都は、2016(平成 28)年 3 月に策定した東京都環境基本計画において、環境基準が全局 未達成の Ox と、年度によって環境基準の達成率に変動のある $PM_{2.5}$ について、3 つの政策 目標(「2.1 大気環境改善に向けたこれまでの取組」12 ページ参照)を新たに掲げた。

この目標を可能な限り早期に達成するためには、Ox や $PM_{2.5}$ の効果的な対策を進める必要があり、そのためには、モニタリング体制を取り巻く現状について正確に把握することや、Ox や $PM_{2.5}$ だけでなくその前駆物質にも着目したモニタリング体制の在り方について検討する必要がある。

(1) 大気環境モニタリングの役割

都の政策目標を達成するためには、現在行っている手法に限定せず、過去の取組や最新 の研究を参考にして、モニタリング体制を見直し、各施策に活用していく必要がある。

ア インベントリの検証

都では5年に1回推計を行い、VOC排出インベントリを更新している。

VOC 多成分調査や VOC 連続測定では、様々な VOC 成分についてモニタリングを行っていることから、インベントリ推計結果の検証に活用することが考えられる。

イ PM_{2.5}測定の検証

 $PM_{2.5}$ の測定については、現在、法に基づく常時監視と、事務処理基準に基づく成分分析調査の2種類を実施している。常時監視によって測定される濃度については、年度により変動はあるものの、改善してきているが、全ての測定局において環境基準を達成するためには、現行の成分分析だけでは発生源寄与の解析が十分行われない可能性があり、より詳細な調査が求められている。

(2) 社会状況の変化への的確な対応

 $Ox や PM_{2.5}$ など、政策目標があり、今後もモニタリングしていく必要がある大気汚染物質がある一方で、既に大幅に環境基準を達成した SO_2 や CO などの物質もある。

今後もそれぞれの物質において測定を継続するかどうかについては、社会情勢の変化等を勘案しつつ、社会的コスト、費用対効果等も踏まえながら、東京の地域特性も含め慎重に検討しなければならない。

ア 自動車技術革新等の社会状況の変化

現在のモニタリング体制において、自動車からの排出ガスの影響による把握を目的として、自排局において様々な測定を行っている。これまでの規制に加え、今後、ガソリン車から燃料電池自動車や電気自動車へとシフトしていく中で、自動車から排出される大気汚染物質は減少していくと想定され、この排出量の減少を継続的に監視していく必要がある。

イ 省エネルギーの推進による変化

気候変動対策等の理由で全国的に推進されている省エネルギーの進展と技術進歩に伴い、排出される大気汚染物質の量そのものが減少していくことが想定される。今後は、国内における省エネルギー施策の動向を踏まえ、大気汚染物質の排出との関連も検証していく必要がある。

ウ 気候変動との関連

地球温暖化の状況が深刻さを増すにつれ、 $PM_{2.5}$ 中に存在する黒色炭素(BC)や Oxの主成分であるオゾン(O_3)が、短期的に地球温暖化に影響を及ぼす短寿命気候汚染物質(SLCP)として、気候変動にも関連している。

SLCP については、短期的な気候変動防止と大気汚染防止の双方に効果があるとして 国際的にも注目されており、今後、 $PM_{2.5}$ 及び Ox の対策実施に当たっては、地球温暖 化対策の観点からも国際的な議論や研究の動向を把握しつつ、検討することが望ましい。

(3) より効果的な解析手法の導入

ア 既存データの整備と活用

効果的な対策の検証に当たっては、「調査・モニタリング」、「解析・研究」、「解析結果を踏まえた対策の検証」及び「調査・モニタリングの見直し」の PDCA サイクルを構築することが重要である。今後のモニタリング体制については、これらの解析結果を踏まえ、適宜見直しを行っていくことが必要である。

その一方で、それぞれの測定データ、特に VOC 連続測定により蓄積されるデータは膨大で、その確定に時間を要することから、継続したデータを取得するためには、以下のとおり対応することが望ましい。

- ・検証に必要な物質から優先的にデータを確定
- ・効率的な目的達成が可能な測定地点の選定

イ 解析手法の導入と広域連携の推進

解析・研究についても、定期的かつ継続的に実施することが必要である。そのためにも、集積された科学的知見を有する都環研とともに、他県市と連携し施策の実現に向けた解析を行ってくことが重要である。

(4) 国の動向と東京の特殊性

ア 国における検討状況

国は、2015(平成 27)年 3 月に取りまとめた「微小粒子状物質の国内における排出抑制策の在り方について(中間取りまとめ)」に基づいて、 $PM_{2.5}$ の科学的知見の充実を図るとともに、国内対策と国際協力に係る取組を進めている。

2018 (平成 30) 年 3 月に開催した中央環境審議会大気・騒音振動部会微小粒子状物 質等専門委員会においては、中間取りまとめに示された課題への対応に係る進捗状況と 今後の検討実施状況を整理したところであり、2019 (平成 31) 年 4 月には 2018 年度

から 2020 年度までの 3 年間における $PM_{2.5}$ 対策に係る検討・実施予定を公表している 15 。 資料では大気環境モニタリングの体制について、

- ・引き続き PM_{2.5} の常時監視体制を強化していくことが必要である。
- ・一方、 SO_2 や CO 等、その他の大気汚染物質については環境基準に比べ相当低い濃度となっている物質もある。
- ・二次生成機構の解明や発生源の把握のためには $PM_{2.5}$ 成分の自動測定等、高度なモニタリングを実施していくことが必要である。

と整理するとともに、今後の検討については、「常時監視の合理化を行いつつ、より 発生源対策に資するようなモニタリング体制について、地方公共団体と国との役割分 担等も含めて検討し、考え方を取りまとめる。」としている。

2020 年度までモニタリング体制に関する検討を行い、効率的・効果的なモニタリング体制の構築は2021年度以降というスケジュールであることから、当面は国の検討動向を注視していく必要がある。

イ その他検討事項

 $PM_{2.5}$ の原因物質の一つとされている VOC は、その定義が非常に幅広く、物質の数も相当数に及んでいる。今後 $PM_{2.5}$ と Ox について政策目標を達成していくためには、追加の VOC 対策を実行することも考えられる。

また、今回検証を行わなかった物質についても、国の検討も踏まえつつ、現行の測定 手法等を継続することが都民への適切な情報提供に資する状態になっているか確認し ていくことも必要になる。とりわけ、環境基準を大幅に達成している大気汚染物質に関 しては、さらなる検証も必要になる可能性がある。

ウ 東京の特殊性

東京は、全国的にも顕著な人口稠密地域であり、単純に事務処理基準を当てはめて、 測定局を減らすことは代表的な測定値を得る目的としては、妥当ではない。特に人口密 度の高い地域である区部においても、その特性は前述の解析((3) 測定局間濃度の日 変動の類似性の調査 39ページ参照)で明らかになったとおり少なくとも4区分あり、 地域特性に合った測定局の選定を慎重に行っていく必要がある。

¹⁵微小粒子状物質(PM_{2.5})対策に係る検討・実施予定(平成 31 年 4 月)

3.2 今後のモニタリング体制の方向性

都の3つの政策目標を達成するためには、モニタリング体制の見直しにとどまらず、昨今の測定機等における技術革新も踏まえつつ、スーパーサイト等において都環研と協働して測定・解析を行うなど、より社会の要請にふさわしいバランスの取れたモニタリング体制を構築していく必要がある。

3.2.1 発生源解析の充実と二次生成の解明

政策目標の達成には、発生源の特定と、Ox や $PM_{2.5}$ の発生機構の解明を重点的に行うことが重要となってくる。

(1) PM_{2.5} 有機マーカー測定の可能性

 $PM_{2.5}$ の主要成分である有機粒子の発生源の寄与解析を行うことが、 $PM_{2.5}$ の環境基準達成のためには重要である 16 。有機粒子は、一次粒子と二次粒子に分けられ、それぞれに人為起源と生物起源が存在するため、それらの寄与割合を知る必要がある。

現在の PM_{2.5} の成分分析においては、炭素成分(有機炭素及び元素状炭素)が測定項目に入っているが、これだけでは一次粒子及び二次粒子の割合や発生源に関する情報を得ることは困難である。

有機粒子に関しては、様々な発生源に対応した指標成分(有機マーカー)が特定されており、代表的な成分としてはバイオマス燃焼の指標であるレボグルコサンがある。有機マーカーの測定は、PM25の発生源寄与解析に役立つものと考えられる。

(2) VOC 連続測定調査の充実

VOC 連続測定は、発生源対策及びその効果検証を主な目的としており、これまでの解析調査は、その一環の中で行ってきたものである。

これまでの解析結果や今後の対策の重要性を踏まえ、Ox 生成機構の把握のため、生成能の高い物質の挙動の把握、解明及びOx 濃度の低減に向けた対策等への効果的な活用を目的として、モニタリング体制を検討する必要がある。

ア測定対象物質

解析調査の結果から、現在定量を実施している 16 物質以外に Ox 生成に大きく影響する物質があることが確認されている。そのため、大気環境中濃度の比較的高い物質、都内排出量の多い物質及び Ox 生成に寄与する物質を定量化対象として追加する必要がある。

また、アルデヒド類のように、Ox 生成時に二次生成により増加する物質も挙動を把握するために定量化対象に追加する必要がある。

以上を踏まえ、現在検討に挙げられている測定対象候補物質を表 14 に示す。

¹⁶ 「関東地域の都市・郊外・森林地点における PM_{2.5} 中有機マーカー成分の特徴」(2017) 群馬県衛生環境研究所:熊谷貴美代、田子博、齊藤由倫、高崎経済大学:工藤慎治、飯島明宏、埼玉大学:関口和彦

表 14 解析調査を踏まえた測定対象候補物質

物質名	MIR	VOC連続測定
トルエン	5.3	0
エタン	0.28	×
メチルエチルケトン	1.48	×
isoペンタン	1.45	0
プロパン	0.49	×
n-ペンタン	1.31	0
エチレン	9.00	×
<i>m</i> , <i>p</i> キシレン	7.80	0
プロピレン	11.66	0
2-メチル-1,3-ブタジエン	10.61	0
<i>m,p</i> エチルトルエン	5.92	0
1,2,4・トリメチルベンゼン	8.87	0
1,3,5-トリメチルベンゼン	11.76	0
ホルムアルデヒド	9.46	×
アセトアルデヒド	6.54	×

注) ◎: 測定対象、優先的に定量化する16成分

〇:測定対象、定量対象外

×:測定対象外

連続測定が可能な物質のうち、優先的な定量化の対象外となっている、iso-ペンタン、m-ペンタン、2-メチル-1,3-ブタジエン、m,p-エチルトルエン、1,2,4-トリメチルベンゼン及び 1,3,5-トリメチルベンゼンについては、16 物質同様に優先的な定量対象とすることが望ましい。

なお、プロピレンについては、表 11 のとおり、測定精度が低いという課題があることから、連続測定技術の状況を見極めてから、定量化対象とするか否かを判断することが望ましい。

イ 測定地点

多摩部は、2014 (平成 26) 年度解析結果により有用な知見が得られ生成機構の把握が前進している。

一方で、区部では生成機構の解析等、解明に向けたより一層の対応が必要である。

Ox が高濃度になる夏場は、南風が卓越するため、南北方向での配置が必要であり、現在は大田区東糀谷と板橋区氷川町がその位置関係性に当たっている。

今後は、区部についての解析をさらに進めるために、現在の区部 4 地点を維持することが望ましい。

3.2.2 測定技術の選定・導入

(1) VOC 連続測定技術

現在の VOC 連続測定機については、濃縮や除湿工程の影響で分析精度が低い物質があることから、分析精度がより向上する測定機への見直しを図ることが望ましい。

なお、連続測定が困難な物質についても、有害大気汚染物質調査や VOC 多成分分析による補完や、必要な時期に集中的に測定を行うなど、実態把握のために工夫して調査を行っていく必要がある。

(2) SO₂及びCOにおける測定機の精度向上

高感度測定機は、SO₂ と CO の両方とも国内メーカーにおいて製品化されている状況にはないが、今後は本格的な高感度測定機の導入を検証するとともに、比較的濃度差の小さい多摩部での限定した運用を見据えて、メーカーから情報を収集していく必要がある。

参考資料

参考資料 l	大気環境モニタリングに関する検討会設置要綱	63
参考資料 2	環境基準	64
参考資料3	測定局と測定項目一覧	66
参考資料 4	測定局配置図	68
参考資料 5	PM _{2.5} 成分分析 捕集方法(2017年度)	70
参考資料 6	PM _{2.5} 成分分析 調査項目及び分析方法 (2017 年度)	70
参考資料7	有害大気汚染物質調査対象物質及び分析法	71
参考資料8	ダイオキシン類調査項目及び分析法	71
参考資料9	有害大気汚染物質及びダイオキシン類 調査測定地点図	72
参考資料 10	スーパーサイトの仕様	73
参考資料 11	VOC 多成分調査 分析項目	74
参考資料 12	VOC 連続測定 分析項目	75
参考資料 13	大気環境モニタリングまとめ	76
参考資料 14	Ox 日最高 1 時間値と日最高 8 時間値との関係	77
参考資料 15	測定局の整備と測定項目の見直し	78
参考資料 16	光化学スモッグ注意報等の発令地域及び Ox の基準測定点	79
参考資料 17	2015、2016、2017年における気温、降水量、日照時間の比較	80
参考資料 18	SPM 日平均値による樹形図	81
参考資料 19	Ox 高濃度気象条件時の MIR 換算 VOC 成分濃度	82
参考資料 20	VOC 連続測定装置の作業内容	84

4 参考資料

参考資料1 大気環境モニタリングに関する検討会設置要綱

平成22年6月30日 22環改大第263号 平成28年11月25日 28環改大第473号

(設置目的)

第1条 「大気汚染防止法第22条の規定に基づく大気の汚染の状況の常時監視に関する事務の処理基準」 の一部改正を踏まえ、東京都における大気汚染常時監視体制の整備等について専門的な見地から学識経験 者等の意見を聴くため、大気環境モニタリングに関する検討会(以下「検討会」という。)を設置する。

(検討事項)

- 第2条 検討会は、次の各号に掲げる事項について調査、検討する。
 - 一 大気環境モニタリング結果の解析・評価に関すること。
 - 二 PM2. 5常時監視測定局の整備(配置計画、設置方法等)に関すること。
 - 三 常時監視測定局の測定項目に関すること。
 - 四 その他必要な事項

(構成)

- 第3条 検討会は、学識経験者等のうちから、環境局長が委嘱する委員5人以内をもって構成する。
- 2 環境局長は、必要があると認めるときは、検討会に臨時委員を置くことができる。
- 3 環境局長は、必要があると認めるときは、検討会に委員以外の者を出席させ、意見を求めることができる。

(任期)

- 第4条 委員の任期は、2年とする。
- 2 委員は、再任を妨げない。

(座長及び副座長)

- 第5条 検討会に座長及び副座長を置く。
- 2 座長は、委員の互選によりこれを定める。
- 3 副座長は、座長が指名する。
- 4 座長は検討会を代表し、会務を統括する。
- 5 副座長は、座長に事故があるとき、その職務を代理する。

(会議)

第6条 検討会は、環境局環境改善部長が招集する。

(検討会の公開原則)

第7条 検討会の会議は、これを公開する。

(議事録及び会議資料)

- 第8条 会議ごとに議事録を作成することとする。
- 2 議事録は、公開とする。ただし、東京都情報公開条例第7条各号に掲げる非開示情報に該当する部分については、非公開とすることができる。
- 3 前項ただし書に基づく非公開は、その根拠を明らかにすることとする。
- 4 前2項の規定は、会議資料等について準用する。

(庶務)

第9条 検討会の庶務は、環境局環境改善部大気保全課において処理する。

(その他)

第10条 この要綱に定めるもののほか、検討会の運営に関して必要な事項は、座長が定める。

附則

この要綱は、平成22年6月30日から施行する。

附即

この要綱は、平成28年12月1日から施行する。

参考資料 2 環境基準

物質名	環境基準
二酸化窒素(NO ₂)	1時間値の1日平均値が0.04 ppmから0.06 ppmまでの ゾーン内、又は、それ以下であること。
浮遊粒子状物質(SPM)	1時間値の1日平均値が0.10 mg/m ³ 以下であり、 かつ、1時間値が0.20 mg/m ³ 以下であること。
微小粒子状物質(PM _{2.5})	1年平均値が15 μg/m³以下であり、 かつ、1日平均値が35 μg/m³以下であること。
光化学オキシダント*(Ox)	1時間値が0.06 ppm以下であること。
二酸化硫黄(SO ₂)	1時間値の1日平均値が0.04 ppm以下であり、 かつ、1時間値が0.1 ppm以下であること。
一酸化炭素(CO)	1時間値の1日平均値が10 ppm以下であり、 かつ、1時間値の8時間平均値が20 ppm以下であること。
ベンゼン (Bz)	年平均値が0.003 mg/m³以下であること。
トリクロロエチレン (TCE)	年平均値が0.20 mg/m³以下であること。
テトラクロロエチレン (PCE)	年平均値が0.2 mg/m³以下であること。
ジクロロメタン (DCM)	年平均値が0.15 mg/m³以下であること。
ダイオキシン類	年平均値が0.6 pg-TEQ/m³以下であること。

出典:2016 (平成28年度) 大気汚染常時測定結果のまとめ ほか

トリクロロエチレンについては、環境基準を「年平均値が 0.13 mg/m^3 以下であること。」とすることが平成 30 年 11 月 19 日に告示された (環境省告示第百号)。

対象区域: 工業専用地域、車道、その他の一般公衆が常時生活していない地域又は場所以外の区域 ※ なお、光化学オキシダントの生成防止のため、非メタン炭化水素(NMHC)について、「光化学オキシダントの日最高 1 時間値 0.06 ppm に対応する午前 6 時から 9 時までの非メタン炭化水素の 3 時間平均値は、0.20 ppmC から 0.31 ppmC の範囲にある。」という大気中炭化水素濃度の指針が設定されている。

環境基準の評価方法

・二酸化窒素(NO_2)

年間の1日平均値のうち、低い方から98%に相当するもの(98%値)を環境基準と 比較して評価する。

・浮遊粒子状物質(SPM)、二酸化硫黄(SO_2)、一酸化炭素(CO)

年間の1日平均値のうち、高い方から2%の範囲にあるもの(365日分の測定値がある場合は、7日分の測定値)を除外した後の最高値(2%除外値)を環境基準と比較して評価する。ただし、上記の評価方法にかかわらず1時間値の1日平均値が基準を超える日が2日以上連続した場合には、非達成とする。

·微小粒子状物質(PM25)

長期基準及び短期基準に関する評価を各々行い、両方を満足した場合に達成と評価する。

長期基準:年平均値を環境基準と比較して評価する。

短期基準:年間の1日平均値のうち、低い方から98%に相当するもの(98%値)を 環境基準と比較して評価する。

※黄砂時等の特異的現象に関する評価への考慮

長期基準による評価が非達成のとき、非黄砂期間中の測定結果の平均値が長期基準を達成している場合にあっては、黄砂の影響で非達成と注釈を付して評価する。同様に短期基準による評価が非達成のとき、非黄砂期間中の測定結果の年間 98%値が短期基準を達成している場合にあっては、黄砂の影響で非達成と注釈を付して評価する。

- ・光化学オキシダント (Ox)
 - 1時間値が 0.06 ppm を超えるときは未達成と評価する。
- ・ベンゼン(Bz)、トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)、ジクロロメタン(DCM) 年平均値が環境基準値を超えるときは未達成と評価する。

参考資料 3 測定局と測定項目一覧

(1) 一般環境大気測定局

			測定局名				高さ(m)						常時監視	Į				-	PM2.5 F	成分分析	Ť	スー	パーサ	·1ト	有	害大気	物質モ	ニタリン	グ	V	/OC多F	龙分分析	ĩ	VOC連 続測定
	局分類	地域	(測定地点名)	所 在	地	PM2.5 採取口	その他採取口	風速計	SO2	СО	SPM	NOx	Ox	нс	気象	SR	PM 2.5	PM 2.5	炭素成	無機元素	イオン	PM2.5 (多成分)	硝酸	NOy	揮発性 有機化	アルデヒ ド類	多環芳 香炭化	重金属	DXN	HAPs	PAMS	極性物	вуос	揮発性有 機化合物
1	一般	区部	千代田区神田司町	千代田区神田公園出張所	(千代田区神田司町2-2)	20	22	27	0		0	0	0		0		2.5	2.5	分	奔		(%/80/3f)	ガス	-	合物	一段	水素	\vdash			\vdash	質	\rightarrow	気に口当
2	一般	区部	中央区晴海	都有地	(中央区晴海3-6-1)	3.5	5.5	12.5	0		0	0	0	0	0		0								0	0	0	0	0	0	0	0	0	
3	一般	区部	港区高輪	都有地	(港区高輪1-6)	3	3.2	5.3			0	0	0	C	0		0																Ŭ	_
4	一般	区部	港区台場	港区立お台場レインボー公園内	(港区台場1-3-1)	3	4	10	0		0	0	0	0	0		0																\dashv	
5	一般	区部	国設東京新宿	新宿御苑	(新宿区内藤町11)	6	4	11	0	0	0	0	0	0	0	0	0								0	0	0	0		0	0	0	0	_
6	一般	区部	文京区本駒込	文京区立勤労福祉会館	(文京区本駒込4-35-15)	13.5	4	14	Ŭ	Ŭ	0	0	0	0	0		0											Ť		Ŭ	Ť		Ť	
7	一般	区部	江東区大島	東京都江東合同庁舎	(江東区大島3-1-3)	18.5	20	29			0	0	0	O	0		0																\neg	
		区部	都環研	東京都環境科学研究所	(江東区新砂1-7-5)																	0	0	0									\neg	Ť
8	一般	区部	品川区豊町	品川区立戸越小学校	(品川区豊町2-1-20)	13.5	16	17.5			0	0	0		0		0					Ŭ											\neg	_
9	一般	区部	品川区八潮	品川区立八潮学園	(品川区八潮5-11-2)	11	13	19	0		0		0	0	0		0																\neg	
10	一般	区部	目黒区碑文谷	目黒区立第八中学校	(目黒区碑文谷4-19-25)	15	17.5	20			0	0	0		Ō	0	0																\neg	_
11	一般	区部	大田区東糀谷	大田区糀谷·羽田地域庁舎	(大田区東糀谷1-21-15)	10	12	24	0	0	0	0	0	0	0		0								0	0	0	0	0	0	0	0	0	0
12	一般	区部	世田谷区世田谷	世田谷区役所	(世田谷区世田谷4-21-27)	20.5	23	31	0	Ō	Õ	Ō	0	O	Ō		0								0	0	0	Ō	Ō	Ō	0	Ö	0	
13	一般	区部	世田谷区成城	都立総合工科高等学校	(世田谷区成城9-25-1)	3	4	14			0	0			0		0										Ť	Ť						
14	一般	区部	渋谷区宇田川町	渋谷区立神南小学校	(渋谷区宇田川町5-1)	12.5	15.5	16.1			Ö	0	0		0		0										\vdash				\vdash	-	-	
15	一般	区部	中野区若宮	都立鷺宮高等学校	(中野区若宮3-46-8)	3	4	13	0		0	0	0	0	0		0																\neg	
16	一般	区部	杉並区久我山	杉並区土木部資材置場	(杉並区久我山5-36-17)	3	5	12	Ĭ		0	O	0	0	0		0																\neg	_
17	一般	区部	荒川区南千住	荒川区立第六瑞光小学校	(荒川区南千住1-4-11)	17	19	20.5	0	0	0	0	0		0		0																	
18	一般	区部	板橋区氷川町	板橋区立板橋第一小学校	(板橋区氷川町13-1)	3	3.8	13.4			0	0	0		0		0								0	0	0	0	0	0	0	0	0	0
19	一般	区部	練馬区石神井町	都立石神井公園	(練馬区石神井町5-21)	3	4	12		0	0	0	0	0	0		0								C	0	0	0	0	0	0	0	0	Ť
20	一般	区部	練馬区北町	練馬区立北町小学校	(練馬区北町1-14-11)	16	19	20			0	0	0		0	0	0)									_
21	一般	区部	練馬区練馬	練馬区立開進第二中学校	(練馬区練馬2-27-28)	3	4	13.5			0	0			0		0																\rightarrow	_
22	一般	区部	足立区西新井	足立区立西新井第一小学校	(足立区西新井6-21-3)	3	4.5	15.5	0		Ō	0	0	0	0		0								0	0	0	0	0	0	0	0	0	_
23	一般	区部	足立区綾瀬	都立東綾瀬公園	(足立区綾瀬6-23)	3	4	19	Ŭ		0	0			0		0	0	0	0	0							Ť	Ŭ	Ŭ	Ť	Ť	$\overline{}$	_
24	一般	区部	葛飾区鎌倉	都有地	(葛飾区鎌倉2-21-4)	3	4	10			0	0	0		0	0	0											_	0*1				-	_
25	一般	区部	葛飾区水元公園	都立水元公園	(葛飾区水元公園3-2)	3	4	10			0	0			0		0												0 % 1				\rightarrow	_
26	一般	区部	江戸川区鹿骨	東京都農林総合研究センター江戸川分場	(江戸川区鹿骨1-15-1)	3	4.5	9.5		0	0	0	0	0	0	0	0										\vdash				\vdash	-	-	_
27	一般	区本	江戸川区春江町	江戸川区立二之江中学校	(江戸川区春江町5-3-3)	9	9.5	20.5			0	0	0		0		0								0	0	0	0	0	0	0	0	0	_
28	一般	区部	江戸川区南葛西	都立葛西南高等学校	(江戸川区南葛西1-11-1)	3	4	20.0			0	0	0	0	0		0														\vdash		$\overline{}$	_
20	一般	多麼	八王子市片倉町	八王子市立由井中学校	(八王子市片倉町553)	4.3	4	15	0		0	0	0		0		0								0	0	0	0	0		\vdash	\rightarrow	\rightarrow	_
30	一般	多麼	八王子市館町	館ケ丘団地中継ポンプ場	(八王子市館町1097-66)	4.3	3.9	6			0	0	0	0	0		0														\vdash	-	-	_
31	一般	多麼	八王子市大楽寺町	八王子市元八王子事務所	(八王子市大楽寺町419)	7.4	6	12.4			0				0		0								0	0	0	0	0				\rightarrow	
32	一般	多麼	立川市泉町	立川市役所	(立川市泉町1156-9)	15	10	19			0	0	0		0		0												O*2				\rightarrow	_
33	一般	多摩	武蔵野市関前	武蔵野市立第五小学校	(武蔵野市関前3-2-20)	14	17	19	0		0	0	0		0		0										H		J #/2				-	
34	一般	多摩		青梅市役所	(青梅市東青梅1-11-1)	20	7.3	28.8	0	0	0	0	0	0	0		0														\vdash	$\neg \neg$	-	
35	一般	多摩	府中市宮西町	府中市役所	(府中市宮西町2-24)	10.5	12	20.0	Ť	Ť	0	0	0	0	0		0																	
36	一般	多麼	調布市深大寺南町	都立農業高等学校神代農場	(調布市深大寺南町4-16-23)	3	4	16			0	0	0	0	0		0											\vdash			\vdash	$\neg \uparrow$	-	_
37	一般	多原	町田市金森	都営金森一丁目アパート	(町田市金森1-22)	3	3.5	12	0		0	0	0	0	0		0														\vdash			
38	一般	多摩		町田市立鶴川第二小学校	(町田市能ヶ谷7-24-1)	3	4	13			0		0		0	0	0										\vdash		0		\vdash	-	-	_
39	一般	多麼	小金井市本町	小金井市役所	(小金井市本町6-6-3)	15.5	17.5	25		0	0	0	0		0	0	0								0	0	0	0	0	0	0	0		_
40	一般	多麼	小平市小川町	小平市立中央公民館	(小平市小川町2-1325)	13.3	16	22	0		0	0	0		0		0																	_
41	一般	多摩		福生市役所	(福生市本町5)	23	4.2	25.5	0	0	0	0	0	0	0	0	0												0		\vdash		-	
49	一般	多麼	狛江市中和泉	狛江市有地	(狛江市中和泉3-4-10)	3	5.5	9	0		0	0	0	0	0		0					0	0	0			\vdash				\vdash	-	-	_
43	一般	多原	東大和市奈良橋	東大和市立第一小学校	(東大和市奈良橋4-573)	3	4.5	13	Ť		0	0	0	0	0	0	0								0	0	0	0	0	0	0	0	0	
4.4	一般	多原	清瀬市上清戸	清瀬市郷土博物館	(清瀬市上清戸2-6-41)	3	4.5	10	0	0	0	0	0	0	0		0))			O _{*3}					
45	一般	多摩		多摩市有地	(多摩市愛宕1-65-1)	3	4	16	0	0	0	0	0	0	0		0	0	0	0	0								O 7K3					
46	一般	多原	西東京市田無町	西東京市民会館	(西東京市田無町4-15-11)	17.5	21	27			0	0	0		0		0														\vdash		-	
47	一般	多原		西東京市立保谷第一小学校	(西東京市下保谷1-4)	3	4	11			0	0			0		0														\vdash			
-11	用义	グル	ロボが中上体行	合計	NH水水川 水管1 型	J	*1	11	20	11	47	44	41	25	47	q	47	2	2	2	2	2	2	2	12	12	12	12	16	10	10	10	10	3
_				ши			L		20	1.1	. "	77	41	20	71	,	71				-		4	- 4	12	12	12	12	10	10	10	10	10	

※1 区立鎌倉図書館屋上(葛飾区鎌倉 2-4-5)で測定 ※2 東京都立川合同庁舎屋上(立川市錦町 4-6-3) ※3 下宿地域市民センター(清瀬市下宿 2-524-1)で測定

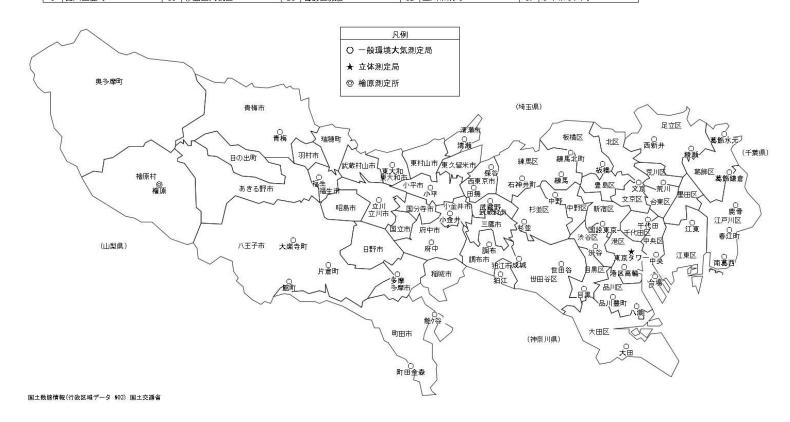
(2) 自動車排出ガス測定局

			測定局名	所 在	地		高さ(m)					1	常時監視						PM2.5 F	成分分析	ŕ	スー	パーサ					ニタリング	ゲ	V	OC多成:	分分析	VOC連 練測定
	局分類	頁 地址	(測定地点名)	対象道路名	(所在地)	PM2.5 採取口	その他 採取口	風速計	SO2	со	SPM	NOx	Ox	НС	気象	SR	PM 2.5	PM 2.5	炭素成 分	無機元素	イオン	PM2.5 (多成分)	硝酸 ガス	NOy	揮発性 有機化 合物	アルデヒ ド類	多環芳 香炭化 水素	重金属	DXN I	HAPs		運性物 質	BVOC 揮発性有 機化合物
1	自排	区部	日比谷交差点	日比谷通り・晴海通り	(千代田区日比谷公園1-6)	3.5	3.5			0	0	0					0						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		₩ 28		78.96						
2	自排	区音	永代通り新川	永代通り	(中央区新川1-3-1)	3	4.5	8			0	0			0		0	0	0	0	0												
3	自排	区部	第一京浜高輪	第一京浜国道	(港区高輪2-20)	3	4			0	0	0					0																
4	自排	区音	新目白通り下落合	新目白通り	(新宿区下落合2-2地先)	3	4				0	0					0																
5	自排	区部	春日通り大塚	春日通り	(文京区大塚3-5-1)	3	4				0	0					0																
6	自排	区部	明治通り大関横丁	明治通り	(台東区三ノ輪2-5地先)	3	4			0	0	0					0																
7	自排	区音	水戸街道東向島	国道6号線	(墨田区東向島1-34-5)	4	4				0	0					0																
8	自排	区部	京葉道路亀戸	国道14号線	(江東区亀戸7-42-17)	3	4	5.5	0	0	0	0		0	0		0								0	0	0	0		0	0	0	0
ç	自排	区部	三ツ目通り辰巳	高速9号線・三ツ目通り	(江東区辰巳1-9地先)	3	3.5			0	0	0					0																
10	自排	区部	北品川交差点	国道15号線・山手通り	(品川区北品川3-11-22)	7	7		0	0	0	0					0																
11	自排	区部	中原口交差点	第一京浜国道・中原街道	(品川区西五反田7-25-1)	3	4.5			0	0	0					0																
12	自排	区部	山手通り大坂橋	山手通り・玉川通り・高速3号線	(目黒区青葉台3-6)	3	3.5			0	0	0					0																
13	自排	区部	環七通り柿の木坂	環状七号線	(目黒区柿の木坂1-1-4)	3	3	7			0	0			0		0																
14	自排	区部	環七通り松原橋	環状七号線	(大田区中馬込2-17地先)	4	4	6.5	0	0	0	0		0	0		0																
15	自排	区部	中原街道南千東	中原街道	(大田区南千東1-33-1)	3	4.5				0	0					0																
16	自排	区部	環八通り千鳥	環状八号線	(大田区千鳥3-3-31地先)	3	3.5			0	0	0					0																
17	自排	区部	玉川通り上馬	玉川通り・高速3号線	(世田谷区上馬4-1-3)	-9	-11			(0)	(0)	(0)					(0)											Ш					
18	自排	区部	環八通り八幡山	環状八号線	(世田谷区粕谷2-19)	3	5	8			0	0			0		0								0	0	0	0		0	0	0	0 0
19	自排	区部	甲州街道大原	甲州街道·高速4号線	(渋谷区笹塚1-64-19)	3	4.5			0	0	0					0								0					0	0	0	0
20	自排	区部	1 山手通り東中野	山手通り	(中野区中央2-18-21)	3.5	4			0	0	0					0																
21	自排	区部	早稲田通り下井草	早稲田通り	(杉並区下井草4-3-29)	3	4.5				0	0					0																
22	自排	区部	明治通り西巣鴨	明治通り	(豊島区西巣鴨2-39-5)	4	3.5				0	0					0																
23	自排	区部	北本通り王子	北本通り	(北区王子5-20番先)	3	4	5.5			0	0			0		0																
24	自排	区部	中山道大和町	中山道・環状七号線・高速5号線	(板橋区大和町14-12)	9	10			0	0	0					0								0					0	0	0	0
25	自排	区部	日光街道梅島	日光街道	(足立区中央本町1-17)	3	3	7.5	0		0	0			0		0																
26	自排	区音	環七通り亀有	環状七号線	(葛飾区亀有2-75-1)	3	4				0	0					0																
27	自排	多馬	甲州街道八木町	甲州街道	(八王子市八木町8-14号先)	3	4				0	0					0																
28	自排	多馬	五日市街道武蔵境	五日市街道	(武蔵野市関前5-21)	3	3.5			0	0	0					0																
29	自排	多馬	連雀通り下連雀	連雀通り	(三鷹市下連雀7-15-4)	3	4				0	0					0																
30	自排	多馬	川崎街道百草園	川崎街道	(日野市落川946地先)	3	4				0	0					0																
31	自排	多馬	新青梅街道東村山	新青梅街道	(東村山市本町1-10地先)	3	4				0	0					0																
32	自排	多馬	甲州街道国立	甲州街道	(国立市谷保6208)	3	4.5	5	0	0	0	0		0	0		0	0	0	0	0												
33	自排	多馬	小金井街道東久留米	小金井街道	(東久留米市中央町6-8-1)	3	4.5				0	0					0																
34	自排	多馬	青梅街道柳沢	青梅街道	(西東京市柳沢2-18)	3	4.5				0	0					0																
35	自排	多馬	東京環状長岡	東京環状	(西多摩郡瑞穂町長岡1-10)	3	6			0	0	0					0																
L				合計					5	17	35	35	0	3	8	0	35	2	2	2	2	-	-	-	4	2	2	2	-	4	4	4	4 1

注) 17_上馬局は 2016 (平成 28) 年 12 月 22 日以降測定休止

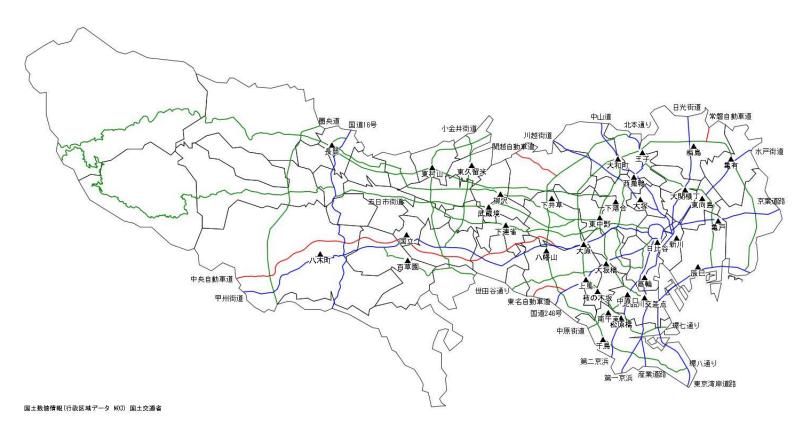
(3) 大気測定所

			所 在	地	í	高さ(m)					;	常時監視	Į				PI	M2.5成分分	折	ス-	-/°-+	ナイト	有	害大気物質	モニタ	リング		VO	C多成分	分析	VOC連 続測定
	地域	測定局名	対象道路名	(所在地)	PM2.5	その他 採取口	風速計	SO2	co	SPM	NOx	Ox	HC	気象	SR	PM 2.5		炭素成 無機元 分 素	イオン	PM2.5 (多成分)	硝酸 ガス	NOy	揮発性 有機化 合物	アルデヒ 多数 香油	表	c属 D	KN HA	Ps P	AMS 極性	170 00 //	C 揮発性有 機化合物
1	多摩	檜原大気測定所	樋里コミュニティーセンター	(西多摩郡檜原村字樋里4331-1)	5	4	7	0		0	0	0		0		0							0	0 () () ()	0 0) C	


(4) 立体測定局

Г								常田	寺監視(±	也点(高)	度)箇所	数)		
	局分類	地域	測定局名	所 在 地	高さ(m)	SO2	СО	SPM	NOx	Ox	нс		気象	
						502	C	SPM	NOx	Ox	HC	風向	風速	湿度
	1	区部	東京タワー	港区芝公園4-2-8	4~250mの10地点(高度)			3	3	3		3	3	6

参考資料 4 測定局配置図


一般環境大気測定局

No	測定局	No	測定局	No	測定局	No	測定局	No	測定局	No	測定局
1	千代田区神田司町	9	品川区八潮	17	荒川区南千住	25	葛飾区水元公園	33	武蔵野市関前	41	福生市本町
2	中央区晴海	10	目黒区碑文谷	18	板橋区氷川町	26	江戸川区鹿骨	34	青梅市東青梅	42	狛江市中和泉
3	港区高輪	11	大田区東糀谷	19	練馬区石神井町	27	江戸川区春江町	35	府中市宮西町	43	東大和市奈良橋
4	港区台場	12	世田谷区世田谷	20	練馬区北町	28	江戸川区南葛西	36	調布市深大寺南町	44	清瀬市上清戸
5	国設東京新宿	13	世田谷区成城	21	練馬区練馬	29	八王子市片倉町	37	町田市金森	45	多摩市愛宕
6	文京区本駒込	14	没谷区宇田川町	22	足立区西新井	30	八王子市館町	38	町田市能が谷	46	西東京市田無町
7	江東区大島	15	中野区若宮	23	足立区綾瀬	31	八王子市大楽寺町	39	小金井市本町	47	西東京市下保谷
8	品川区豊町	16	杉並区久我山	24	葛飾区鎌倉	32	立川市泉町	40	小平市小川町		

自動車排出ガス測定局

No	測定局								
1	日比谷交差点	9	三ツ目通り辰巳	17	玉川通り上馬	25	日光街道梅島	33	小金井街道東久留米
2	永代通り新川	10	北品川交差点	18	環八通り八幡山	26	環七通り亀有	34	青梅街道柳沢
3	第一京浜高輪	11	中原口交差点	19	甲州街道大原	27	甲州街道八木町	35	東京環状長岡
4	新目白通り下落合	12	山手通り大坂橋	20	山手通り東中野	28	五日市街道武蔵境		
5	春日通り大塚	13	環七通り柿の木坂	21	早稲田通り下井草	29	連雀通り下連雀		
6	明治通り大関横丁	14	環七通り松原橋	22	明治通り西巣鴨	30	川崎街道百草園		
7	水戸街道東向島	15	中原街道南千東	23	北本通り王子	31	新青梅街道東村山		
8	京業道路亀戸	16	環八通り千鳥	24	中山道大和町	32	甲州街道国立		

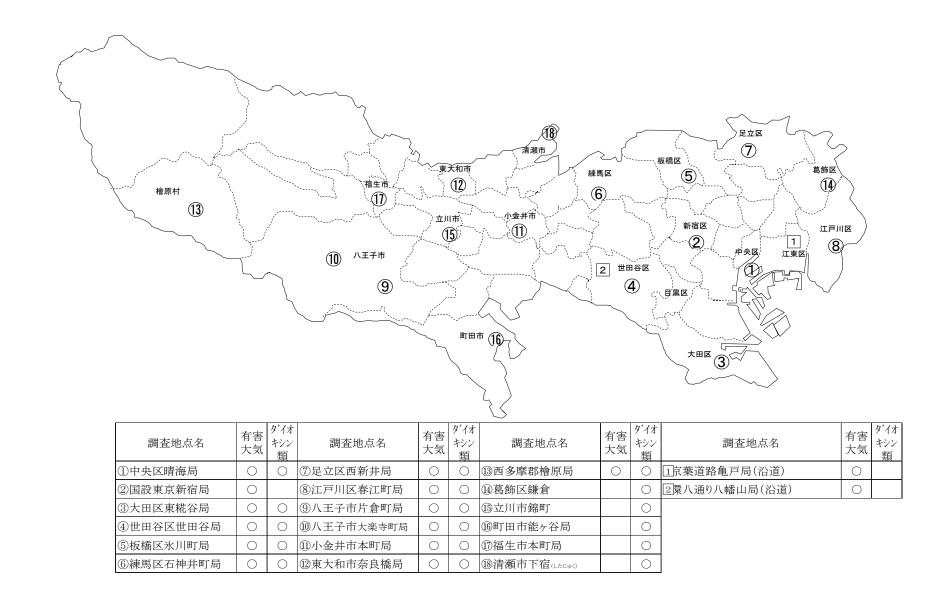
参考資料 5 PM_{2.5}成分分析 捕集方法(2017年度)

N +F + T F		捕集方法		フィルタ	,
分析項目	測定場所	捕集装置	流量 (L/min)	材質	サイズ (mmφ)
PM _{2.5} 質量濃度 度 無機元素成分 水溶性イオン	多摩市愛宕 永代通り新川 足立区綾瀬	Model 2025i (Thermo SCIENTIFIC 社) LV-250R 型	16.7	PTFE (PALL, Tefl Lot No: T61393)	47
成分	甲州街道国立	(SIBATA 社)			
炭素成分	多摩市愛宕 永代通り新川	Model 2025i (Thermo SCIENTIFIC 社)	16.7	石英繊維 (Pallflex,	47
	足立区綾瀬 甲州街道国立	LV-250R 型 (SIBATA 社)		2500QAT-UP, Lot No:20060)	

参考資料 6 PM_{2.5}成分分析 調査項目及び分析方法(2017年度)

		分析項目	分析方法/分析機器
質量	t 濃度	PM _{2.5} 質量濃度	フィルタ捕集-質量法(秤量) ウルトラミクロ天秤 METTLERTOLEDO XP26
	炭素成分	有機炭素(OC1、OC2、OC3、OC4) 元素状炭素(EC1、EC2、EC3) 炭化補正値(OCpyro)	サーマルオプティカルリフレクタンス法 (IMPROVE プロトコル) カーボンエアロゾル測定装置 Sunset Loboratory OCEC Carbon Analyzer Model 4L
成分	無機 イオン 成分	硫酸イオン (SO4²)、硝酸イオン (NO3)、塩化物イオン (Cl)、ナトリウムイオン (Na+)、カリウムイオン (K+)、カルシウムイオン (Ca²+)、マグネシウムイオン (Mg²+)、アンモニウムイオン (NH4+)	イオンクロマトグラフ法 イオンクロマトグラフ Metrohm 940 professional IC Vario
濃度	無機元素成分	ナトリウム (Na)、アルミニウム (Al)、カリウム (K)、カルシウム (Ca)、スカンジウム (Sc)、チタン (Ti)、バナジウム (V)、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、コバルト (Co)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、ヒ素 (As)、セレン (Se)、ルビジウム (Rb)、モリブデン (Mo)、アンチモン (Sb)、セシウム (Cs)、バリウム (Ba)、ランタン (La)、セリウム (Ce)、サマリウム (Sm)、ハフニウム (Hf)、タングステン (W)、タンタル (Ta)、トリウム (Th)、鉛 (Pb)、ケイ素 (Si)	誘導結合プラズマ質量 分析(ICP-MS)法 ICP 質量分析装置 PerkinElmer NexION 350S

参考資料 7 有害大気汚染物質調査対象物質及び分析法


区分		調査項目	採取・分析法
優	揮発性有機化合物	ベンゼン トリクロロエチレン テトラクロロエチレン ジクロロメタン アクリロニトリル 塩化ビニルモノマー クロロホルム 1,2-ジクロロエタン 1,3-ブタジエン トルエン 塩化メチル	キャニスター捕集 ガスクロマトグラフ質量分析法
先取		酸化エチレン	固相反応捕集 ガスクロマトグラフ質量分析法
組物	アルデヒド類	アセトアルデヒド ホルムアルデヒド	DNPH捕集管捕集 高速液体クロマトグラフ法
質	多環芳香族 炭化水素	ベンゾ[a]ピレン	ハイボリウムエアサンプラ捕集 高速液体クロマトグラフ法
	重金属類	ニッケル化合物 ベリリウム及びその化合物 マンガン及びその化合物 クロム及びその化合物	ハイボリウムエアサンプラ捕集 誘導結合プラズマ発光分析法
	至业内场	ひ素及びその化合物	ハイボリウムエアサンプラ捕集 水素化物発生誘導結合プラズマ発光分析法
		水銀及びその化合物	金アマルガム捕集 加熱気化冷原子吸光法
上記以外	揮発性有機化合物	m,pキシレン のキシレン エチルベンゼン スチレン 1,1-ジクロロエタン 四塩化炭素	キャニスター捕集 ガスクロマトグラフ質量分析法

※2019 (平成31) 年4月より、六価クロム化合物の分析を開始。採取・分析法は、ローボリウムエアサンプラ捕集及びイオンクロマトグラフ—ポストカラム吸光光度法。

参考資料 8 ダイオキシン類調査項目及び分析法

区分	調査項目	採取・分析法
ダイオキ シン類	ポリ塩化ジベンゾーパラージオキシン ポリ塩化ジベンゾフラン及びコプラナーPCB	ハイボリウムエアサンプラ捕集 ガスクロマトグラフ質量分析法 年4回 1週間(168時間)連続採取

参考資料 9 有害大気汚染物質及びダイオキシン類 調査測定地点図

参考資料 10 スーパーサイトの仕様

	測定項目	狛江測定局	環境科学研究所
(Cl. NO	PM _{2.5}	シーケンシャ	ルサンプラー
	Mg ²⁺ , Ca ²⁺ , EC, OC)	◎FRM2025i	FRM2025i 等
終反応	生窒素酸化物(NOy)濃度、	硝酸ガス連絡	売測定装置
//心/又//心门	が では、 では、 では、 では、 では、 では、 では、 では、	◎ 高感度 NOx 計 42i-TL +前処理システム	高感度 NOx 計 42i-TL +前処理システム
		大気エアロゾル化学成	分連続自動分析装置
rr	PM _{2.5} , PM _{2.5-10}		(2016 (平成28) 年度まで)
質	量濃度、OBC、SO4 ² 、	©ACSA-14	ACSA-08
	NO ₃ , WSOC, pH	0-10-0-1	(2017 (平成29) 年度以降)
			ACSA-14
	$\mathrm{SO}_4{}^{2 ext{-}}$	_	△サルフェートモニター
			(5020 i)
	気 象	風向、風速、	温度、湿度
	二酸化硫黄	紫外線蛍光法	_
一般局	浮遊粒子状物質	ベータ線吸収法	
として の測定	微小粒子状物質	同上	
項目	光化学オキシダント	紫外線吸収法	局の測定結果を
	窒素酸化物(NO、NO ₂)	化学発光法	【 使用する。
	炭化水素(CH ₄ 、NMHC)	ガスクロマトグラフ法	

◎2016 (平成 28) 年度より稼動△2017 (平成 29) 年度以降未実施

参考資料 11 VOC 多成分調查 分析項目

, <u>J</u>	黄州 II VOO 多/00/01 III
	有害大気汚染物質を中心とし
	た成分(HAPs)
1	Vinylchloride
2	1,3-Butadiene
3	Dichloromethane
	Acrylonitorile
	1,1-Dichloroethane
6	Chloroform
7	
8	1,2-Dichloroethane
9	Benzene
10	•
11	Toluene
12	Tetrachloroethylene
13	Ethylbenzene
14	m,p-Xylene
15	o-Xylene
16	Styrene
	HCFC-22
18	iso-Butane
19	CFC-12
20	HCFC142b
21	Chloromethane
22	n-Butane
	cis-2-Butene
	Bromomethane
	Chloroethane
	HCFC-123
27	
	n-Pentane
	HCFC-225ca
30	HCFC-141b
	HCFC-225cb
	CFC-113
33	1,1-Dichloroethylene
34	3-Chloro-1-propene
35	
	cis-1,2-Dichloroethylene
37 38	1,1,1-Trichloroethane
	1,2-Dichloropropane cis-1,3-Dichloropropene
	trans-1,3-Dichloropropene
	1,1,2-Trichloroethane
	1,2-Dibromoethane
	Chlorobenzene
	1,1,2,2-Tetrachloroethane
	n-Decane
	m,p-Ethyltoluene
	1,3,5-Trimethylbenzene
48	1,2,4-Trimethylbenzene
49	m-Dichlorobenzene
50	1,2,3-Trimethylbenzene
51	n-Undecane
52	p-Dichlorobenzene
53	Benzylchloride
54	o-Dichlorobenzene
55	1,2,4-Trichlorobenzene
	Hexachloro-1,3-butadiene

L	ANAH									
	光化学オキシダント関連物質を									
	中心とした成分(PAMS)									
V1	Ethane	(
	Ethylene									
	Propane									
	Acethylene	> *								
1		/ /1\								
2										
3	1-Butene	(:-)								
4	I E I									
5	trans-2-Butene									
6	cis-2-Butene	(23)								
7	iso-Pentane	<u> </u>								
8	1-Pentene									
9	n-Pentane	(28)								
10	trans=2=Pentene	(20)								
11	cis-2-Pentene									
12		000								
13	•									
14										
	2,3-Dimethylbutane	!								
	Cyclopentane									
	3-Methylpentane									
	2-Methyl-1-penter									
	n-Hexane	(35)								
	2,4-Dimethylpentan									
22	Methylcyclopentane									
	2-Methylhexane 2,3-Dimethylpentane									
	3-Methylhexane									
	Cyclohexane									
	2,2,4-Trimethylpentane									
	n-Heptane	ane								
	Benzene	(9)								
	Methylcyclohexane	(3)								
30	2,3,4-Trimethylpent	ane								
31	2-Methylheptane	carro								
32										
	n-Octane									
	Toluene	(11)								
	n-Nonane	(1.17								
36	Ethylbenzene	(13)								
37	m,p-Xylene	(14)								
38	o-Xylene	(15)								
	Styrene	(16)								
	Isopropylbenzene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
41	n-Decane	(45)								
42	n-Propylbenzene									
43	m,p-Ethyltoluene	(46)								
44	1,3,5-Trimethylbenz									
45	1,1,1									
46										
47										
48										
49										
50	p-Diethylbenzene									

	極性物質+BVOC
1	IPA
2	Acetone
3	MTBE
4	Methylacetate
5	n-Propylalcohol
6	MEK
7	Ethylacetate
8	Isobutylalcohol
9	n-Buthylalcohol
10	MiBK
11	Butylacetate
1	α-pinene
2	Camphene
3	β-pinene
4	Limonene

※の10物質はGC-FIDで分析 他はGC-MSで分析

注)HAPsの1~16は有害大気 汚染物質調査の16物質

参考資料 12 VOC 連続測定 分析項目

Z	VOC 連続側足 分析項目	_
	有害大気汚染物質を中心とした 成分(HAPs)	
1	Vinylchloride	
2	,	
	Dichloromethane	
5	1,1-Dichloroethane	
6	Chloroform	
7	Carbon tetrachloride	
8 9	1,2-Dichloroethane Benzene	
	Trichloroethylene	
	Toluene	
	Tetrachloroethylene	
	Ethylbenzene	
	m,p-Xylene	
15	o-Xylene	
	Styrene	
	CFC-22	
	iso-Butane	*1
	CFC-12	
	HCFC142b	
	Chloromethane n-Butane	*2
	cis-2-Butene	*2
	Bromomethane	110
	Chloroethane	
	HCFC-123	
	CFC-114	
28	n-Pentane	*4
	HCFC-225ca	
	HCFC-141b	
	IPA	
	HCFC-225cb	
	CFC-113	
	Acetone 1,1-Dichloroethylene	
	3-Chloro-1-propene	
	Methylacetate	
	n-Hexane	*5
	cis-1,2-Dichloroethylene	
40	1,1,1-Trichloroethane	
41	1,2-Dichloropropane	
42	cis-1,3-Dichloropropene	
43	Granto i jo Diotno oproponto	
44 45	-,-,=	
	1,2-Dibromoethane Chlorobenzene	
	n-Decane	*6
	4-Ethyltoluene	*7
	1,3,5-Trimethylbenzene	*8
	1,2,4-Trimethylbenzene	* 9
	m-Dichlorobenzene	
	1,2,3-Trimethylbenzene	*10
	n-Undecane	*11
	p-Dichlorobenzene	
	Benzylchloride	
	-,-,	
บช	Hexachloro-1,3-butadiene	l

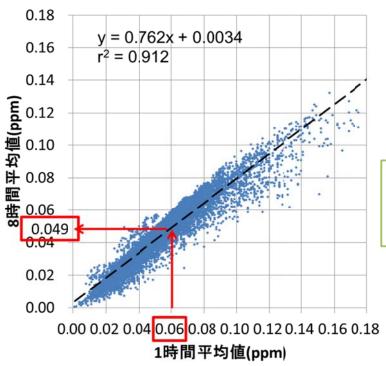
		_
	光化学オキシダント関連物質を	
	中心とした成分(PAMS)	
1	Propylene	1
	iso-Butane	*1
	1-Butene	
	n-Butane	*2
	tras-2-Butene	
	cis-2-Butene	*3
	Isopentane	1
8		1
9		*4
	trans-2-Pentene	1
	cis-2-Pentene	1
	2-Methl-1,3-butadiene	
	2,2-Dimethylbutane	1
	2-Methylpentane	1
	2,3-Dimethylbutane	1
	Cyclopentane	
	3-Methylpentane	1
	2-Methyl-1-pentene	1
	n-Hexane	*5
		[*] J
	2,4-Dimethylpentane	
	Methylcyclopentane	
	2-Methylhexane 2,3-Dimethylpentane	-
	3-Methylhexane	
		-
	Cyclohexane 2,2,4-Trimethylpentane	-
		-
	n-Heptane	-
	Methylcyclohexane	-
	2,3,4-Trimethylpentane	-
	2-Methylheptane	
	3-Methylheptane	-
	n-Octane	-
	n-Nonane	-
	α-pinene	-
30	Isopropylbenzene	4.0
36		*6
	n-Propylbenzene	-
	4-Ethyltoluene	* 7
	β-pinene	١.,
	1,3,5-Trimethylbenzene	*8
	o-Ethyltoluene	١.,
	1,2,4-Trimethylbenzene	<u>*</u> 9
	1,2,3-Trimethylbenzene	*10
	n-Undecane	*11
45		-
46	· · · · · · · · · · · · · · · · · ·	-
47		-
48	Limonene	J

*: 重複している成分

参考資料 13 大気環境モニタリングまとめ

		大気	汚染防止法等に基	生づく調査	都独自調査				
	事項	常時監視	PM _{2.5} 成分分析調査	有害大気汚染物質 モニタリング	スーパーサイト	VOC 多成分分析	VOC 連続測定		
目的		大防法第 22 条第 1 項の規定に基づき、地域における大気汚染状況、発生源の状況及び高濃度地域の把握、汚染防止対策の効果を把握する。	を 関 に の て 発排 ト び 動機 る に 物 推 ン 検 中 次 解 別 知 向 質 定 べ 証 の 気 二 を 様 中 次 解 で 紙 で 証 の 生 明 と の と 明 で な が は で ま の と 明 で な が は で ま の と 明 で な が は で ま の と 明 で な が は で ま の と 明 で な が は で ま か と が は で ま か と が は か と が は か と が は か と 明 と が は か と か と が は か と が は か と か と が は か と か と が は か と か と が は か と か と か と か と か と か と か と か と か と か	大防法第 18 条の 39 第 1 PM _{2.5} の成分及び前 項、第 22 条第 1 項、ダイ 駆物質の挙動を解析 5 特法第 26 条第 1 項の規定 し、二次汚染物質の ほに基づき、優先取組物質 生成のメカニズムの だを中心に大気環境の状況 把握に活用する。 だを把握・評価する。 が		可能な限り多数の成 分について、その濃 度や濃度変化を明ら かにすることで、 様々な解析や種々の 施策策定の基礎資料 とする。	常時監視だけでは 把握できない1時間 毎の濃度変化を批 握することで、より 詳細で効果的な VOC削減対策の検 討や効果の検証は 活用する。		
	測定地点	82 (86) 地点 ()内は立体局、檜原含 む	4 地点	ベンゼン等 15 地点 ダイオキシン類 17 地点	2 地点	15 地点	4 地点		
	内訳	一般局 47 自排局 35 [立体局 1 (3) ^{注 1} 檜原 1 ^{注 2}	一般局 2 自排局 2	ベンゼ ン等 ダイオキシ ン類 一般 12 17 沿道 2 0 檜原 1 0	(区部) 都環研+大島局 1 (多摩部) (_{一般)} 狛江局 1	一般 10 沿道 4 檜原 1	一般沿道		
	頻度	365 日 24h	年4回2週間	ベンゼン等 毎月1回、24h ダイオキシン類 年4回(168h/回)	365 ∃ 24h	24h 毎月1回、24h 365 F			
	データ	時間値	日平均値	ベンゼン等 日平均値 ダイオキシン類 1週間値	日平均値 時間値	日平均値	時間値		
調査概要		9+気象等	47	30	常時監視 (8+気象) に下記物質を追加	108 物質 (110 成分)	16		
6要	対象物質	SO ₂ (26 地点) CO (28 地点) SPM (86 地点) PM _{2.5} (83 地点) O x (45 地点) NO,NO ₂ (83 地点) CH ₄ (28 地点) NMHC (28 地点) 気象 (55 地点) 日射量 (9地点) 酸性雨 (2地点)	PM _{2.5} 炭素成分 (2成分8項目) 無機元素成分 (Na等30項目) 水溶性イオン 成分 (SO ₄ ² 等8項目)	揮発性有機化合物 (18項目) アルデヒド類 (2項目) 多環芳香族炭化水素 (1項目) 重金属 (6項目) ダイオキシン類 (3項目)	PM _{2.5} 質量濃度(秤量法) 炭素(2成分 8項目) 水溶性有機炭素 イオン (9成分) pH PM _{2.5-10} 質量濃度, イオン (2成分) pH ガス成分 硝酸ガス その他 総反応性窒素酸化物 (NOy)	①HAPs 多成分 56 物質(58 成分) ②PAMS 多成分 54 物質(56 成分) (①②は17 物質重複) ③極性物質 11 物質(11 成分) BVOC 4 物質(4 成分)	(揮発性有機化合物 ベンゼン トリクロロエチレン テトラクロロエチン ジクロロメタン アクリロニトリル 塩化ビニルモノマー クロロホルム 1,2-ジクロロエタン トルエン mp-キシレン エチルベンゼン スチレン 1,1-ジクロロエタン 四塩化炭素		
開始年		1975 (昭和 50) 年度	2008 (平成 20) 年度	1997 (平成 9) 年度 ダイオキシン類 1996 (平成 8) 年度	2016 (平成 28) 年度	2008 (平成 20) 年度	1999 (平成 11) 年度		
公表方法 (HP:ホームページ) 備考		・プレス発表 ・年報 ・テキストデータ配付 (環境局 HP内) 1971(昭和 46)年 度より測定を開始 した地点はある が、変ったのは 1975(昭和 50)年 度から。	_	・プレス発表・年報・テキストデータ配付(環境局 HP 内)	- フィルタ採取は 365 日実施してい るが、成分分析は、 解析対象期間の み。	年報	年報		

大防法:大気汚染防止法、ダイ特法:ダイオキシン類対策特別措置法


2018 (平成 30) 年 4 月現在

注 1: 立体局は東京タワー測定局のこと。25m、125m、225m の高さの 3 地点で気象以外の項目について測定。法定設置ではない。

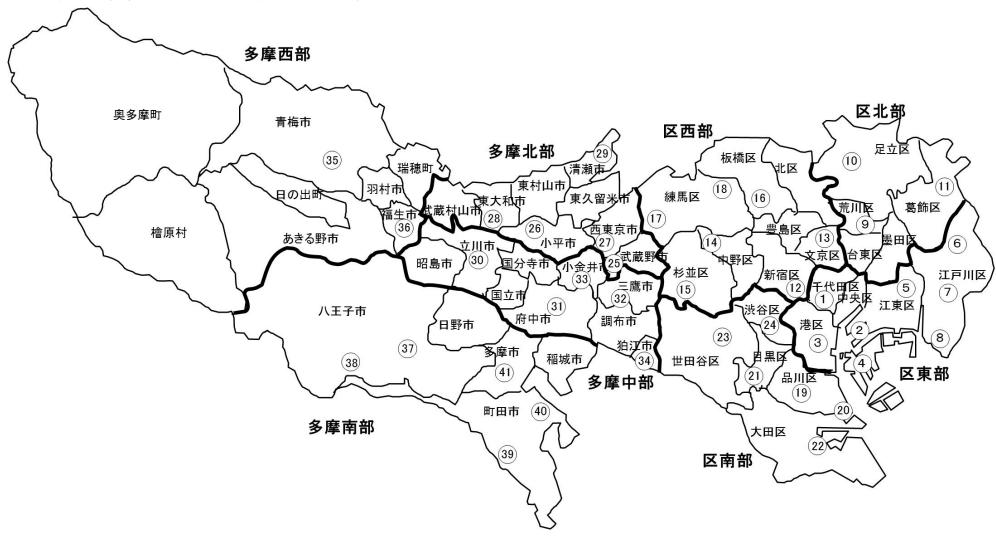
注2:人為的汚染源が少ない場所として設置した檜原大気汚染測定所のこと。法定設置ではない。

参考資料 14 Ox 日最高 1 時間値と日最高 8 時間値との関係

<日最高1時間値と日最高8時間値の関係>

- 2015年度の東京都内測 定局41局のデータ (n = 14817、欠測148)
- ▶ 1時間値0.06ppmは、 8時間値0.049ppmに 換算

出典: 平成 29 年東京都 VOC 対策セミナー


「光化学オキシダント対策の最前線一光化学スモッグ注意報発令日数ゼロを目指して一」 「光化学オキシダントの中長期目標」(東京都環境局)発表資料

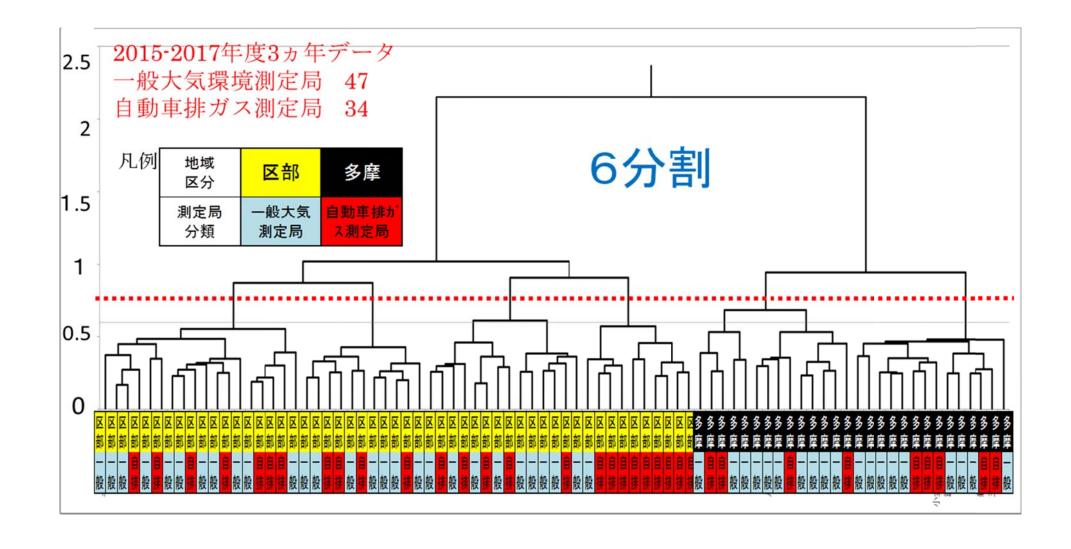
(http://www.kankyo.metro.tokyo.jp/air/air pollution/voc/event/h29voc01.html)

参考資料 15 測定局の整備と測定項目の見直し

	一般局の配置	自排局の配置	測定項目の見直し			
測定局数	47 局 (うち、八王子市 3 局、 国設 1 局)	35 局 (うち、八王子市 1 局)	一酸化炭素 28 局 二酸化硫黄 25 局			
検討会	1985 年設置 (データ:1984 年度)	1989 年設置 (データ:1985 年度)	一酸化炭素 1995 年度 二酸化硫黄 1997 年度			
整備計画	1988 年度	1992 年度	一酸化炭素 1996 年度 二酸化硫黄 1998 年度			
必要性	・発生源の大幅な減少・環境濃度の改善傾向	・道路の整備の進捗 ・交通量の変化	・環境基準の長期達成 ・新たな課題への対応			
考え方	・測定値の地域代表性	・道路の類型化	・VOC 対策等に対応 ・緊急時対応の充実			
	一般局、自排局	一般局、自排局、測定数の適正配置は環境省通達に準拠				
検討手法	・大気拡散発生源シミュレーションの実施・可住面積、人口密度、市街化の程度で修正	リンクの類型化	・大気拡散発生源シミュレーション			

参考資料 16 光化学スモッグ注意報等の発令地域及び Ox の基準測定点

参考資料 17 2015、2016、2017年における気温、降水量、日照時間の比較


年	気温 降水量 日		日照時間	
	関東甲信	平年差+0.9℃	平年比 107%	104%
		高い	多い	平年並み
2015年	東京	年平均 16.4℃	降水量 1781.5 mm	日照時間 1966.6 時間
2015 +		平年差 +1.0℃	平年比 117%	平年比 105%
		かなり高い	多い	平年並み
			(降水日数 115 日)	
	関東甲信	平年差+1.0℃	平年比 107%	101%
		かなり高い	多い	平年並み
2016年	東京	年平均 16.4℃	降水量 1779.0 mm	日照時間 1841.7 時間
2010 +		平年差 +1.0℃	平年比 116%	平年比 98 %
		かなり高い	多い	平年並み
			(降水日数 113 日)	
	関東甲信	平年差+0.3℃	平年比 99%	109%
		平年並み	平年並み	かなり多い
2017年	東京	年平均 15.8℃	降水量 1430.0 mm	日照時間 2050.9 時間
2017 +		平年差 +0.4℃	平年比 94%	平年比 109%
		平年並み	平年並み	かなり多い
			(降水日数 95 日)	

出典

2015年の日本の天候(平成28年1月4日 報道発表資料 気象庁)

2016年の日本の天候(平成29年1月4日 報道発表資料 気象庁)

2017年の日本の天候の特徴(平成30年1月4日 報道発表資料 観測部・地球環境・海洋部)

参考資料 19 Ox 高濃度気象条件時の MIR 換算 VOC 成分濃度

町田市能ヶ谷局

Mirk 物質名	1日ピク /	□ /+J						
Mile 物質名					午前		午後	
Recompany					(10	0-12時)	(1)	3-15時)
Ox120 Ox100 Ox100 Ox100 Ox120 Ox	MIR	物質名		〇 古漁庄		〇 古漁庄		
D.		777	Ox120		Ox120		Ox120	
2.83 vinyl chloride			以上		以上		以上	
12.61 1.3-butadiene				ていた成分		ていた成分		ていた成分
2.24 Acrylonitorile		2						
0.04 Dichloromethane								
0.07								
0.02 Chloroform								
O.21 I.2-Dichloroethane								
0.72 Benzene								
0.00 Carbon tetrachloride 0.00 0.00 0.00 0.00 0.06 1.00 0.06 1.00 0.06 1.00 0.01								
0.64 Trichloroethylen								
4.00 Toluene								
0.01 Tetrachloroethene								
3.04 Ethylbenzene				**		**		**
T.80 mp-Xylene 11.69 * 5.72 * 5.17 *								
1.73 Styrene				**		*		**
Total So-Butane Color				*		*		*
1.23 iso-Butane								
9.73 I-Butene				*		*		**
1.15 n-Butane				**		***		***
15.16 trans-2-Butene				**		**		***
14.24 cis-2-Butene				**		***		***
1.45 iso-Pentane			1.17		0.88			
7.21 1-Pentene	14.24	cis-2-Butene						
1.31 n-Pentane				**		**		***
10.56 trans-2-Pentene 1.54 0.56 0.55 1.06 12-Methl-1,3-butadiene 1.575 * 10.49 11.87 * 1.17 2,2-Dimethylbutane 0.15 0.12 0.14 1.50 2-Methylpentane 0.92 0.63 0.82 0.97 2,3-Dimethylbutane 1.17 * 0.77 1.04 *** 2.39 Cyclopentane 0.47 0.27 0.44 1.80 3-Methylpentane 1.32 * 0.86 1.10 *** 1.52 2-Methylpentane 1.32 * 0.86 1.10 *** 1.52 2-Methylpentane 1.32 * 0.86 1.10 *** 1.55 2,4-Dimethylpentane 0.62 0.43 0.43 0.43 1.24 n-Hexane 1.19 * 0.65 1.09 *** 1.55 2,4-Dimethylpentane 0.18 0.14 0.18 2.19 Methylcyclopentane 0.81 0.43 0.59 1.19 2-Methylpentane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylbeane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.15 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 0.15 1.07 2-Methylheptane 0.15 0.14 0.15 0.90 0.0ctane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 0.25 1.03 2,3,4-Trimethylpentane 0.15 0.14 0.15 0.90 0.0ctane 0.16 0.14 0.22 0.23 0.90 0.90 0.0ctane 0.16 0.14 0.21 0.90 0.0ctane 0.17 0.18 0.90 0.0ctane 0.19 0.14 0.21 0.90 0.0ctane 0.15 0.90 0.0ctane 0.16 0.94 0.92 0.92 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.								***
10.38 cis-2-Pentene				*		*		***
10.61 2-Methl-1,3-butadiene 15.75 * 10.49 11.87 * 1.17 2,2-Dimethylbutane 0.15 0.12 0.14 1.50 2-Methylpentane 0.92 0.63 0.82 0.97 2,3-Dimethylbutane 1.17 * 0.77 1.04 *** 2.39 Cyclopentane 0.47 0.27 0.44 1.80 3-Methylpentane 1.32 * 0.86 1.10 *** 5.26 2-Methyl-1-pentene 0.62 0.43 0.43 0.43 1.24 n-Hexane 1.19 * 0.65 1.09 *** 1.55 2,4-Dimethylpentane 0.18 0.14 0.18 2.19 Methylcyclopentane 0.81 0.43 0.59 1.19 2-Methylhexane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.25 Cyclohexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.15 0.17 0.18 1.80 3-Methylheptane 0.15 0.14 0.14 0.15 1.80 3-Methylheptane 0.15 0.14 0.14 0.15 1.80 3-Methylheptane 0.15 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 0.25 1.50 0.70								
1.17 2,2-Dimethylbutane 0.15 0.12 0.14 1.50 2-Methylpentane 0.92 0.63 0.82 0.97 2,3-Dimethylbutane 1.17 * 0.77 1.04 **** 1.80 3-Methylpentane 1.32 * 0.86 1.10 **** 1.80 3-Methylpentane 1.32 * 0.86 1.10 **** 1.24 n-Hexane 1.19 * 0.65 1.09 *** 1.55 2,4-Dimethylpentane 0.18 0.14 0.18 1.219 Methylcyclopentane 0.81 0.43 0.59 1.19 2-Methylhexane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylhexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.07 Heptane 0.37 0.21 0.24 1.07 Heptane 0.37 0.21 0.24 1.00 Methylcyclohexane 0.55 0.27 0.25 1.01 2,3-Timethylpentane 0.17 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.16 1.07 Heptane 0.15 0.14 0.15 1.09 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.15 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.15 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.15 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.15 0.69 n-Diethylboluene 1.19 0.71 0.68 8.87 1.2,4-TMB 7.35 3.66 3.49 * 11.97 1.2,3-Trimethylbenzene 0.54 0.30 0.26 0.61 n-Undecane 0.54 0.30 0.26 0.62 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.41 0.42 0.42 0.42 0.43 0.44 0.44 0.44 0.44 0.44 0.45 0.45 0.45 0.46 0.47 0.47 0.47 0.48 0.48 0.48 0.49 0.49 0.49 0.40 0.2								
1.50 2-Methylpentane 0.92 0.63 0.82 0.97 2,3-Dimethylbutane 1.17 * 0.77 1.04 *** 2.39 Cyclopentane 0.47 0.27 0.44 1.80 3-Methylpentane 1.32 * 0.86 1.10 *** 1.52 2-Methyl-1-pentene 0.62 0.43 0.43 1.24 n-Hexane 1.19 * 0.65 1.09 *** 1.55 2,4-Dimethylpentane 0.18 0.14 0.18 1.55 2,4-Dimethylpentane 0.81 0.43 0.59 1.19 2-Methylkexane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylkexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.15 0.14 0.16 1.07 2-Methylheptane 0.15 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.10 0.78 Nonane 0.33 0.24 0.22 0.25 1.50 0.25 1.50 0.27 0.25 1.50 0.27 0.25 0.25 0.27 0.25			15.75	*	10.49		11.87	*
0.97 2,3-Dimethylbutane 1.17 * 0.77 1.04 **** 2.39 Cyclopentane 0.47 0.27 0.44 1.80 3-Methylpentane 1.32 * 0.86 1.10 **** 5.26 2-Methyl-1-pentene 0.62 0.43 0.43 0.43 1.24 n-Hexane 1.19 * 0.65 1.09 **** 1.55 2,4-Dimethylpentane 0.18 0.14 0.18 2.19 Methylecyclopentane 0.81 0.43 0.59 1.19 2-Methylhexane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylhexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2.39 Cyclopentane 0.47 0.27 0.44 1.80 3-Methylpentane 1.32 * 0.86 1.10 **** 5.26 2-Methyl-1-pentene 0.62 0.43 0.43 1.24 n-Hexane 1.19 * 0.65 1.09 **** 1.55 2.4-Dimethylpentane 0.18 0.14 0.18 1.55 2.4-Dimethylpentane 0.81 0.43 0.59 1.19 2-Methylkexane 0.26 0.20 0.18 1.34 2.3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylkexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2.2.4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2.3.4-Trimethylpentane 0.17 0.17 0.18 1.80 3-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.15 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.21 0.14 0.21 0.68 1.76 1.35 - TMB 2.54 8.87 1.24-TMB 7.35 8.3.66 3.49 8 1.14 8.87 1.24-TMB 7.35 8.3.66 3.49 8 1.17 1.23-Trimethylbenzene 0.28 0.17 0.18 0.19 0.61 n-Undecane 0.23 0.17 0.11 0.16 0.26 0.26 0.26 0.27 0.25	1.50	2-Methylpentane	0.92		0.63		0.82	
1.80 3-Methylpentane			1.17	*			1.04	***
S.26 2-Methyl-1-pentene	2.39	Cyclopentane	0.47		0.27		0.44	
1.24 n-Hexane			1.32	*	0.86		1.10	***
1.55 2,4-Dimethylpentane 0.18 0.14 0.18 0.19			0.62		0.43			
2.19 Methylcyclopentane 0.81 0.43 0.59 1.19 2-Methylhexane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylhexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34			1.19	*	0.65		1.09	***
1.19 2-Methylhexane 0.26 0.20 0.18 1.34 2,3-Dimethylpentane 0.13 0.07 0.07 1.61 3-Methylhexane 0.40 0.22 0.27 1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54								
1.34 2,3-Dimethylpentane								
1.61 3-Methylhexane	1.19	2-Methylhexane	0.26		0.20		0.18	
1.25 Cyclohexane 0.41 0.22 0.30 1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.17 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71								
1.26 2,2,4-Trimethylpentane 0.21 0.14 0.16 1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.17 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * <								
1.07 Heptane 0.37 0.21 0.24 1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.17 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.								
1.70 Methylcyclohexane 0.55 0.27 0.25 1.03 2,3,4-Trimethylpentane 0.17 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 *								
1.03 2,3,4-Trimethylpentane 0.17 0.18 1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 *<								
1.07 2-Methylheptane 0.15 0.14 0.14 1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethy	1.70	Methylcyclohexane						
1.80 3-Methylheptane 0.28 0.14 0.15 0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.62 0.33 0.33								
0.90 n-Octane 0.13 0.11 0.13 0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
0.78 Nonane 0.33 0.24 0.22 4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
4.51 α-Pinene 1.69 1.13 1.02 2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
2.52 Isopropylbenzene 0.21 0.14 0.21 0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
0.68 n-Decane 0.61 0.43 0.34 2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
2.03 n-Propylbenzene 0.31 0.22 0.23 5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
5.92 mp-Ethyltoluene 4.16 * 2.34 * 2.25 * 11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
11.76 1,3,5-TMB 2.54 * 1.38 * 1.14 * 5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33								
5.59 o-Ethyltoluene 1.19 * 0.71 0.68 8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33						*		*
8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33						*		*
8.87 1,2,4-TMB 7.35 * 3.66 3.49 * 11.97 1,2,3-Trimethylbenzene 2.08 * 1.14 * 1.01 * 0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33	5.59	o-Ethyltoluene		*				
0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33	8.87	1,2,4-TMB		*				*
0.61 n-Undecane 0.23 0.17 0.14 7.10 m-Diethylbenzene 0.54 0.30 0.26 4.43 p-Diethylbenzene 0.62 0.33 0.33						*		*
4.43 p-Diethylbenzene 0.62 0.33 0.33	0.61	n-Undecane						
4.43 p-Diethylbenzene 0.62 0.33 0.33	7.10	m-Diethylbenzene						
4.51 Camphene 3.25 * 1.03 * 0.78					0.33		0.33	
	4.51	Camphene	3.25	*	1.03	*	0.78	

東大和市奈良橋局

		朝 (7-9時)		午前 (10-12時)		午後 (13-15時)	
MIR	物質名	Ox120	Ox高濃度	Ox120	Ox高濃度	Ox120	Ox高濃度
		以上	時に増加し ていた成分	以上	時に増加し ていた成分	以上	時に増加し ていた成分
2.83	vinyl chloride	0.02	C + 7 = 7 × 7 × 7 × 7	0.01	V 12/4/4/2	0.00	C + 7 = /4/2/3
	1,3-butadiene	0.63		0.29		0.39	
2.24	Acrylonitorile	0.13		0.10		0.07	
0.04	Dichloromethane	0.08		0.07		0.06	
	1,1-Dichloroethane Chloroform	0.00		0.00		0.00	
	1,2-Dichloroethane	0.00		0.00		0.00	
0.21	Benzene	0.56		0.03		0.41	
0.00	Carbon tetrachloride	0.00		0.00		0.00	
	Trichloroethylen	0.65		0.50		0.43	
	Toluene	33.16	**	20.56	*	16.83	*
	Tetrachloroethene	0.00		0.01		0.01	
	Ethylbenzene	6.30	*	4.66	*	3.02	
	m,p-Xylene	14.70	*	9.40	*	5.87	
	Styrene	1.01	*	0.50		0.38	
	o-Xylene	5.60	*	3.39	*	2.32	
0.72	iso-Butane	1.36	*	0.88		1.11	**
	1-Butene n-Butane	3.53 3.42	*	2.69 2.18		3.06 3.15	*
	trans-2-Butene	1.23	*	0.87		1.29	***
	cis-2-Butene	0.74		0.37		0.84	
	iso-Pentane	3.23	*	2.27		3.35	*
7.21	1-Pentene	1.24	*	0.61		1.08	*
	n-Pentane	2.13	*	1.43	*	1.91	**
10.56	trans-2-Pentene	0.91		0.37		0.89	
10.38	cis-2-Pentene	1.39		0.73		1.50	*
	2-Methl-1,3-butadiene	26.10	***	21.65	***	17.61	***
	2,2-Dimethylbutane	0.08		0.06		0.08	
	2-Methylpentane 2,3-Dimethylbutane	0.90		0.56		0.69	
	Cyclopentane	0.38	*	0.03		0.74	
	3-Methylpentane	1.25	*	0.74		0.85	
5.26	2-Methyl-1-pentene	0.96		0.58		0.83	
	n-Hexane	1.27	**	0.66		0.71	
1.55	2,4-Dimethylpentane	0.11		0.06		0.09	
2.19	Methylcyclopentane	0.82		0.47		0.48	
1.19	2-Methylhexane	0.38		0.26		0.27	
	2,3-Dimethylpentane	0.15		0.08		0.08	
	3-Methylhexane	0.42		0.22		0.25	
	Cyclohexane 2,2,4-Trimethylpentane	0.43		0.26		0.19	
	Heptane	0.19		0.11		0.12	
	Methylcyclohexane	0.68		0.23		0.29	
1.03	2,3,4-Trimethylpentane	0.12		0.09		0.10	
1.07	2-Methylheptane	0.12		0.06		0.07	
1.80	3-Methylheptane	0.23		0.11		0.12	
	n-Octane	0.18		0.12		0.11	
0.78	Nonane	0.43		0.23		0.19	
	α-Pinene	2.81		0.65		0.68	
	Isopropylbenzene	0.28 0.93		0.15		0.11	
	n-Decane n-Propylbenzene	0.93		0.03		0.34	
	m,p-Ethyltoluene	5.23		2.26		1.60	
	1,3,5-TMB	3.80		1.04		0.94	
	o-Ethyltoluene	1.64		0.80		0.57	
8.87	1,2,4-TMB	10.88	*	4.34		3.26	
	1,2,3-Trimethylbenzene	3.04	*	1.58	*	1.22	
	n-Undecane	0.37		0.26		0.20	
	m-Diethylbenzene	0.83		0.38		0.24	
	p-Diethylbenzene	0.83		0.44		0.36	
4.51	Camphene	5.27	*	1.68	*	1.58	**

参考資料 20 VOC 連続測定装置の作業内容

VOC 連続測定の基本作業

GC/MS による測定

・1 時間毎測定 ・測定地点 4 か所

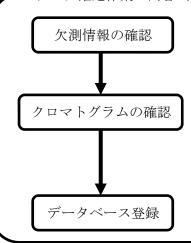
・測定対象物質:96成分

・優先定量物質:16成分

⇒1 日当たり優先物質 1,536 データ (全対象物質で 9,216 データ)

保守点検等

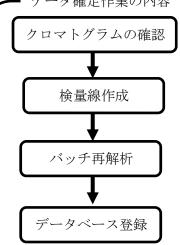
・3週間ごとに通常点検・6か月ごとに定期点検


・通常点検時に標準ガスを利用し検量線作成

データ確定作業

・6か月ごとに実施(年2回)

・1回の作業あたり優先物質で約28万データが対象 (測定対象物質全てを行うと約170万データ)


データ確定作業の内容(優先定量物質16成分)

・保守点検結果報告書より確認

- ・優先定量物質について、全測定時間の確認実施
- ・自動同定されたピークが測定対象成分であることの確認
- ・ピークの切り方が適正か確認
 - ⇒適正でない場合、修正後再定量

データ確定作業の内容 (優先定量物質以外)

- ピークの誤同定確認→適正でない場合、保持時間修正
- ・HAPs 用、PAMS 用として検量線作成

・特定成分の異常値の確認、修正含む